Obius

Multi tool use
Obius

|
Longitudo
|
3650 km
|
Altitudo principii
|
160 m
|
Moles decussis
|
287 km ad ostium: 12 492 m³/s
|
Area ex qua aqua affluit
|
2 990 000 km²
|
Principium
|
confluxus Biae et Catunae
|
Ostium
|
Sinus Obiensis Maris Karensis
|
Regio
|
Siberia Occidentalis
|
Obius[1][2][3] vel Obus,[4] vulgo Oby,[1]Obi[5] seu nunc Ob[6] (Russice Обь), est maximum flumen in Siberia Occidentali in Russia situm, et septimum a maximo flumen in orbe terrarum repertum.

Tabula pelvis siccantis Obii
E confluente fluviorum Biae (ex Altino lacu exientis) et Catunae[4] prope Biscum urbem incipiens, 3650 chiliometra per territorium Altaicum, regiones Novosibirscensem et Tomensem atque districtus autonomos Chanty-Mansiensem – Iugra et Iamalo-Neneticum regionis Tumenensis patet, multas accolas (quarum maxima Irtis est) accipiens, et in Sinum Obiensem Maris Karensis Oceani Glacialis Septentrionalis effunditur. Ad Obium sunt Barnaulia, Novosibirscum, Surgutum, Salechardum nonnullaeque aliae urbes.
Notae |
↑ 1.01.1 Ph. Ferrarius, M.A. Baudrand, Novum lexicon geographicum, tom. II, 1697, p. 3.
↑ H. Scherer, Tabellae geographicae, 1737, pp. 171, 172.
↑ C. Egger, Lexicon Nominum Locorum: Supplementum referens nomina Latina vulgaria, 1985, p. 313.
↑ 4.04.1 I.G. Gmelin, Flora Sibirica sive historia plantarum Sibiriae, tom. I, 1747, p. 230:
"Catuna et Bi fluuii vbi confluunt, Obus incipit".
↑ S. Herberstein, Rerum Moscoviticarum Commentarii, 1557, pp. 88, 89, 127.
↑ P.S. Pallas, Flora Russica, tom. I, 1789, p. 81.
Nexus externi |

|
Vicimedia Communia plura habent quae ad Obium spectant.
|

|
Situs geographici et historici: Locus: 52°25′56″N 84°59′7″E, 66°22′49″N 71°46′43″E, 66°45′0″N 69°30′0″E • OpenStreetMap • GeoNames
|
Pagina cum textu de Obio fluvio Lexici universalis Iohannis Hofmanni .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Latine)
Pagina de Obio fluvio Encyclopaediae Sovieticae Magnae editionis tertiae
(Russice)
Pagina de Obio fluvio Encyclopaediae Russicae Magnae
(Russice)
j8TfK1JkjcYb,sMBV9n4z1sd,j710s REWnkbwS,m0u8JceTLZWwR5sv,dB0,pdVFBZoyNEgUndnQXr2VC,zRGn5dprO8
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...