Officium: Archiepiscopus, Episcopus Munus: professor, presbyter catholicus
Consociatio
Religio: Catholicismus
Memoria
Laurae: HazteOir.org Prize
Bashar Matthaeus Warda (natus in Bagdato die 15 Iunii 1969) est presbyter redentorista et a die 24 Maii 2010 archieparchus Arbilae Chaldaeorum (Archieparchia Arbilensis Chaldaeorum).[1]; [2]
Index
1Biographia
2Pinacotheca
3Notae
4Nexus externi
Biographia |
Natus 1969, consecratus presbyter anno 1993 et anno 1997 introivit in Conngregatione Redentoristarum.
Doctor Univesitate Lovaniensis anno 1999.
Consecratus est archieparchia die 3 Iulii 2010 a patriarcha chaldaico Emmanuel III Delly.[3];[4]; [5]
Pinacotheca |
Episcopus Warda anno 2015.
Archieparca Warda cum episcopo Mauritio Malvestiti in cathedrale Laudense, vigilia Pentecostes, die 14 Maii 2016.
Notae |
↑Iraqi archbishop: The plight of fleeing Christians makes him quarrel with God
↑«Noi siamo odiati perché ci ostiniamo a esistere come cristiani»
↑Those who've stayed – what now for Christians in Syria and Iraq?
↑Warda: aiutate i cristiani perseguitati d'Iraq
↑Christians disappearing from Iraq, bishops lament
Nexus externi |
Pagina archieparchiae arbilensis chaldaeorum
Ordines Ecclesiae Catholicae
Albi · Augustiniani · Barnabitae · Benedictini · Camilliani · Canonici Augustiniani · Capuccini · Carmelitae · Carmelitae Discalceati · Carthusiani · Cistercienses · Claretiani · Comboniani · Dominicani · Eudistae · Filii Amoris Misericordis · Franciscani · Iesuitae · Lasalliani · Legionari Christi · Mercedarii · Minimi · Oratoriani · Passionistae · Praemonstratenses · Rosminiani · Sacra Familia · Societas Parisiensis missionum ad exteras gentes · Salesiani · Scalabriniani · Scheutistae · Servi Mariae · Servi Iesu et Mariae · Spiritani · Trappistae · Trinitarii · Ursulinae · Vincentiani
Vide etiam: Categoria:Ordines Ecclesiae Catholicae
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...