Suilla

Multi tool use

Suillae disiunctionis schema.
Suilla sive porcina porci caro est. In varias edibiles partes suilla dividitur. In Europa et in Asia Orientali crebro manducatissima caro est. In Germania anno 2004 consumptio pro capite 39,5 kg(39,3 kg anno 2003/tota carnica consumptio 61,3 kg) fuit. Contra, in aliquibus religionibus (velut Islamismo et Iudaismo) suilla omnino vetitur.
Porci in praesenti circiter 180 dies nati et cum pondere inter 95 et 110 kg immolantur.
Civitates productoriae |
Maxima suillae productoria natio Sina est quam Civitates Foederatae et Germania sequuntur. Aliae ponderis Europaeae productoriae nationes Hispania, Francia, Polonia et Dania est.
Maxima suillae productoriae nationes in mundo (2004)
Ordo
|
Natio
|
Productio (milibus tonnarum)
|
Ordo
|
Natio
|
Productio (milibus tonnarum)
|
1 |
Sina |
47 753 |
10 |
Russia |
1 750
|
2 |
Civitates Foederatae |
9 332 |
11 |
Vietnamia |
1 700
|
3 |
Germania |
4 366 |
12 |
Italia |
1 618
|
4 |
Hispania |
3 335 |
13 |
Philippinae |
1 400
|
5 |
Brasilia |
3 110
|
6 |
Francia |
2 290 |
15 |
Nederlandia |
1 245
|
7 |
Polonia |
2 100 |
16 |
Respublica Coreana |
1 100
|
8 |
Canada |
1 970 |
17 |
Mexicum |
1 100
|
9 |
Dania |
1 762 |
18 |
Belgia |
1 050
|
Fons: Handelsblatt – Die Welt in Zahlen (2005)
Nexus interni
- Collegium Porcinae Nationale
- Poc chuc
Oi nZFuW cpinFHR2n BETzgdSqusDxCMOiMFEeI34CO9N9NMOmC 2s6nG LfJJ,zxLU,57dh96Xn0UBoYbssBIquFaP7SeJHU 5r4rw7
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...