Nicolaus Bohr

Multi tool use

-2
Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.

Nicolaus Bohr
Res apud Vicidata repertae:
Nativitas:
7 Octobris 1885;
HafniaObitus:
18 Novembris 1962;
HafniaPatria:
DaniaNomen nativum:
Niels Henrik David Bohr
Officium
Munus: physicus, professor, nuclear scientist
Patronus: Universitas Hafniensis
Consociatio
Religio: Apostasy in Catholicism
Familia
Genitores: Christian Bohr; Ellen Bohr
Coniunx: Margrethe Nørlund
Proles: Ernest Bohr, Erik Bohr, Hans Bohr, Aage Nicolaus Bohr
Memoria
Laurae: Praemium Nobelianum physicae, Franklin Medal, Order of the Elephant, Atoms for Peace Award, Pour le Mérite for Sciences and Arts, Niels Bohr International Gold Medal, Copley Medal, Faraday Lectureship Prize, Max Planck Medal, Knight Grand Cross of the Order of the Falcon, Hughes Medal, Helmholtz Medal, Matteucci Medal, Honorary doctor of the University of Zagreb, honorary doctorate of Technion, Honorary doctor of the Technical University of Denmark, Guthrie Lecture
Sepultura: Assistens Cemetery

Albertus Einstein et Nicolaus Bohr.
Nicolaus Henricus David Bohr (Danice: Niels Henrik David Bohr) (7 Octobris 1885 – 18 Novembris 1962) physicus Danicus erat et contributor celeber mechanicae quanticae. Multum cum Alberto Einstein et Ernesto Rutherford laborabat. Anno 1922 Praemium Nobelianum Physicae accepit.
Elementum Bohrium et Niels Bohr Institutet, institutus physicae theoreticae Universitatis Hafniensis, nomina a Nicolao Bohr traxerunt. Bohr Pontificiae Academiae Scientiarum sodalis fuit.
Sententia Latina ad suum insigne utendum habebat: "Contraria sunt complementa." Ea est ex cogitatione cosmologiae yin et yang Taoismi.
Aage Nicolaus Bohr filius etiam physicus praemium Nobelianum accepit.
Nexus externi |

|
Vicimedia Communia plura habent quae ad Nicolaum Henricum David Bohr spectant.
|
De Nicolao Bohr in pagina Nobeliano Physicae Praemio dicata .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
ULYbr1iXd,c zF0Q2b5KSP e9B4ZPlT
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...