Optica

Multi tool use

Spectra electromagnetica colorum qui oculo videri possunt, ex prismate generata.
Optica est scientia lucis, pars physicae quae lucis actiones proprietatesque, atque interactionem inter lucem et materiam describit.
Ut consuetum est, optica visibilium radiorum actiones inquirit. Saeculo autem undevicensimo, alii radii inventi sunt, scilicet, infrarubri, ultraviolacei, X, radioelectrici. Saeculo vicensimo, radii gamma inventi sunt, et physici ad electromagnetismum theoriam generalem pervenerunt, quae radios electromagnetici spectri omnes una ratione describit: undae electromagneticae.
Nexus interni
- Aequationes Maxwellianae
- Discus opticus
- Fibra optica
- Laser
- Rectenna optica
- Spectrum visuale
Bibliographia |
- Barfuß, Friedrich Wilhelm. 1860. Populäres Lehrbuch der Optik, Katoptrik und Dioptrik. Ed. 3a.
- Bergmann, Ludwig, et Clemens Schaefer. 2004. Optik. Ed. 10a. Bergmann-Schaefer Lehrbuch der Experimentalphysik, 3. Berolini: De Gruyter. ISBN 3110170817.
Born, Max, et Emil Wolf. 1999. Principles of Optics. Ed. 7a. Cantabrigiae: Cambridge University Press. ISBN 0521642221.
- Darrigol, Olivier. 2012. A History of Optics: From Greek Antiquity to the Nineteenth Century. Oxoniae: Oxford University Press. ISBN 9780199644377.
- Haferkorn, Heinz. 2003. Optik. Ed. 4a. Weinheim: Wiley-VCH. ISBN 3527403728.
- Hecht, Eugene. 2005. Optik. Ed. 4a Oldenburgi et Monaci. ISBN 3486273590.
- Kühlke, Dietrich. 2004. Optik. Ed. 2a. Francofurti: Deutsch. ISBN 3817117418.
Nexus externi |
Isaaci Newtoni Optice, burndy.mit.edu (in forma .pdf, latine et anglice)
diCn2t 2uU,vNihFZICR6i,3aYFQvKRaL PrddjNKWg,9XXbmq2M,D,W
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...