Rhizoma

Multi tool use
Rhizoma in botanica est plerumque horizontalis subterraneusque plantae caulis qui ut fieri solet radices surculosque ex nodis emittit. Plantae subterraneis rhizomatibus comprehendunt cum curcumam, lupulum, Toxicodendron diversilobum (Hogan 2008), et zingiber, omnes proprietates medicinales habentes, tum herbas inutiles, Cynodonte dactylonte, Sorgho halepensi, et Cypero rotundo non exceptis. Nonnullis plantis sunt rhizomata quae super terram crescunt vel in soli superficie iacent, sicut nonnullae iridum filiciumque species, cuius surculi patuli sunt rhizomata. Inter plantas aquaticas, Nymphaeaceae rhizomata habent.
Generaliter, rhizomatibus sunt brevia internodia; radices ex fundo nodorum ac novos surculos ex vertice nodorum emittunt. Stolo autem, cum plerumque rhizomatis simile sit, nihilominus rhizomate (principali plantae cauli) differt quod ex cauli exstanti exsilit, internodia longa habet, et novos surculos ex extremo, sicut fragariae, generat.
Qui hortum colunt rhizomatibus frequenter utuntur ut plantas propagatione vegetativa propagent. Plantae sic propagatae asparagum, cannas, Convallariam maialem, irides, Orchidaceas sympodiales, et zingiber comprehendunt.
Caulis tuber est incrassata rhizomatis vel stolonis pars quae dilatatum est ut organum penarium sit. Generatim, tuber amylo impletum est; exempli gratia, Solanum tuberosum, quod tantum stolon modificatum est. Vox tuber saepe non adamussim adhibetur, et aliquando ad plantas rhizomatosas admovetur.
Nexus interni
Fontes |
- Hogan, C. Michael. 2008. "Western Poison-Oak: Toxicodendron diversilobum." In Global Twitcher, ed. Nicklas Stromberg, apud situm globaltwitcher.auderis.se.
- Stern, Kingsley R. [Annus ignotus]. Introductory Plant Biology. Ed. decima. ISBN 0-07-290941-2.
y7IGD2 l
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...