Keras Applications - using images larger than the default size












1












$begingroup$


I would like to use eg Xception network with default input size 299x299, but my images are 450x600. Are there any other options besides cropping and subsampling ?










share|improve this question









$endgroup$

















    1












    $begingroup$


    I would like to use eg Xception network with default input size 299x299, but my images are 450x600. Are there any other options besides cropping and subsampling ?










    share|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I would like to use eg Xception network with default input size 299x299, but my images are 450x600. Are there any other options besides cropping and subsampling ?










      share|improve this question









      $endgroup$




      I would like to use eg Xception network with default input size 299x299, but my images are 450x600. Are there any other options besides cropping and subsampling ?







      keras tensorflow cnn






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 13 hours ago









      I.D.MI.D.M

      135




      135






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Have a look at where the reshaping happens. Just before that, you can insert a global average pooling layer in. This way you can handle any size.



          However, I recommend cropping and scamming. Create multiple crops if necessary and average the results. That is likely still faster than using a bigger image.



          How to use Xception



          #!/usr/bin/env python
          # -*- coding: utf-8 -*-
          """See https://martin-thoma.com/image-classification/ for details."""
          from __future__ import print_function

          import numpy as np
          import json
          import os
          import time

          from keras import backend as K
          from keras.preprocessing import image
          from keras.applications.xception import Xception
          from keras.utils.data_utils import get_file

          CLASS_INDEX = None
          CLASS_INDEX_PATH = ('https://s3.amazonaws.com/deep-learning-models/'
          'image-models/imagenet_class_index.json')


          def preprocess_input(x, dim_ordering='default'):
          """
          Standard preprocessing of image data.

          1. Make sure the order of the channels is correct (RGB, BGR, depending on
          the backend)
          2. Mean subtraction by channel.

          Parameters
          ----------
          x : numpy array
          The image
          dim_ordering : string, optional (default: 'default')
          Either 'th' for Theano or 'tf' for Tensorflow

          Returns
          -------
          numpy array
          The preprocessed image
          """
          if dim_ordering == 'default':
          dim_ordering = K.image_dim_ordering()
          assert dim_ordering in {'tf', 'th'}

          if dim_ordering == 'th':
          x[:, 0, :, :] -= 103.939
          x[:, 1, :, :] -= 116.779
          x[:, 2, :, :] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, ::-1, :, :]
          else:
          x[:, :, :, 0] -= 103.939
          x[:, :, :, 1] -= 116.779
          x[:, :, :, 2] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, :, :, ::-1]
          return x


          def decode_predictions(preds, top=5):
          """
          Decode the predictionso of the ImageNet trained network.

          Parameters
          ----------
          preds : numpy array
          top : int
          How many predictions to return

          Returns
          -------
          list of tuples
          e.g. (u'n02206856', u'bee', 0.71072823) for the WordNet identifier,
          the class name and the probability.
          """
          global CLASS_INDEX
          if len(preds.shape) != 2 or preds.shape[1] != 1000:
          raise ValueError('`decode_predictions` expects '
          'a batch of predictions '
          '(i.e. a 2D array of shape (samples, 1000)). '
          'Found array with shape: ' + str(preds.shape))
          if CLASS_INDEX is None:
          fpath = get_file('imagenet_class_index.json',
          CLASS_INDEX_PATH,
          cache_subdir='models')
          CLASS_INDEX = json.load(open(fpath))
          results =
          for pred in preds:
          top_indices = pred.argsort()[-top:][::-1]
          result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
          results.append(result)
          return results


          def is_valid_file(parser, arg):
          """
          Check if arg is a valid file that already exists on the file system.

          Parameters
          ----------
          parser : argparse object
          arg : str

          Returns
          -------
          arg
          """
          arg = os.path.abspath(arg)
          if not os.path.exists(arg):
          parser.error("The file %s does not exist!" % arg)
          else:
          return arg


          def get_parser():
          """Get parser object."""
          from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
          parser = ArgumentParser(description=__doc__,
          formatter_class=ArgumentDefaultsHelpFormatter)
          parser.add_argument("-f", "--file",
          dest="filename",
          type=lambda x: is_valid_file(parser, x),
          help="Classify image",
          metavar="IMAGE",
          required=True)
          return parser


          if __name__ == "__main__":
          args = get_parser().parse_args()

          # Load model
          model = Xception(include_top=True, weights='imagenet')

          img_path = args.filename
          img = image.load_img(img_path, target_size=(224, 224))
          x = image.img_to_array(img)
          x = np.expand_dims(x, axis=0)
          x = preprocess_input(x)
          print('Input image shape:', x.shape)
          t0 = time.time()
          preds = model.predict(x)
          t1 = time.time()
          print("Prediction time: {:0.3f}s".format(t1 - t0))
          for wordnet_id, class_name, prob in decode_predictions(preds)[0]:
          print("{wid}t{prob:>6}%t{name}".format(wid=wordnet_id,
          name=class_name,
          prob="%0.2f" % (prob * 100)))


          Why it works with any size



          Look at the model.summary() of Xception, especially the output shape. Notice the global average pooling layer? Before that, the shape is determined by the input. Meaning until that point, it can be anything.




          Global pooling is another type of transition layer. It applies pooling over the complete feature map size to shrink the input to a constant 1 × 1 feature map and hence allows one network to have different input sizes.




          Source: Me: Analysis and Optimization of Convolutional Neural Network Architectures






          share|improve this answer











          $endgroup$













          • $begingroup$
            Reshaping of what exactly ? Input tensor ? In that case, would not we receive something like that for RGB images: [450, 600, 3] -> [1, 1, 3] ?
            $endgroup$
            – I.D.M
            11 hours ago










          • $begingroup$
            I've edited the example quite a bit. Turns out that you actually don't need to change anything.
            $endgroup$
            – Martin Thoma
            10 hours ago










          • $begingroup$
            Thank you very much for your extended response. I have a few more questions: 1. Why the documentation says that the default input size is 299x299 ? 2. It seems to me that there is some broken formatting at output shape - eg before GlobalAveragePooling2 it should probably be (None, None, None, 2048) instead (None, None, None, 2 3. Should I change only the Dense layer ?
            $endgroup$
            – I.D.M
            9 hours ago













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45393%2fkeras-applications-using-images-larger-than-the-default-size%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Have a look at where the reshaping happens. Just before that, you can insert a global average pooling layer in. This way you can handle any size.



          However, I recommend cropping and scamming. Create multiple crops if necessary and average the results. That is likely still faster than using a bigger image.



          How to use Xception



          #!/usr/bin/env python
          # -*- coding: utf-8 -*-
          """See https://martin-thoma.com/image-classification/ for details."""
          from __future__ import print_function

          import numpy as np
          import json
          import os
          import time

          from keras import backend as K
          from keras.preprocessing import image
          from keras.applications.xception import Xception
          from keras.utils.data_utils import get_file

          CLASS_INDEX = None
          CLASS_INDEX_PATH = ('https://s3.amazonaws.com/deep-learning-models/'
          'image-models/imagenet_class_index.json')


          def preprocess_input(x, dim_ordering='default'):
          """
          Standard preprocessing of image data.

          1. Make sure the order of the channels is correct (RGB, BGR, depending on
          the backend)
          2. Mean subtraction by channel.

          Parameters
          ----------
          x : numpy array
          The image
          dim_ordering : string, optional (default: 'default')
          Either 'th' for Theano or 'tf' for Tensorflow

          Returns
          -------
          numpy array
          The preprocessed image
          """
          if dim_ordering == 'default':
          dim_ordering = K.image_dim_ordering()
          assert dim_ordering in {'tf', 'th'}

          if dim_ordering == 'th':
          x[:, 0, :, :] -= 103.939
          x[:, 1, :, :] -= 116.779
          x[:, 2, :, :] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, ::-1, :, :]
          else:
          x[:, :, :, 0] -= 103.939
          x[:, :, :, 1] -= 116.779
          x[:, :, :, 2] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, :, :, ::-1]
          return x


          def decode_predictions(preds, top=5):
          """
          Decode the predictionso of the ImageNet trained network.

          Parameters
          ----------
          preds : numpy array
          top : int
          How many predictions to return

          Returns
          -------
          list of tuples
          e.g. (u'n02206856', u'bee', 0.71072823) for the WordNet identifier,
          the class name and the probability.
          """
          global CLASS_INDEX
          if len(preds.shape) != 2 or preds.shape[1] != 1000:
          raise ValueError('`decode_predictions` expects '
          'a batch of predictions '
          '(i.e. a 2D array of shape (samples, 1000)). '
          'Found array with shape: ' + str(preds.shape))
          if CLASS_INDEX is None:
          fpath = get_file('imagenet_class_index.json',
          CLASS_INDEX_PATH,
          cache_subdir='models')
          CLASS_INDEX = json.load(open(fpath))
          results =
          for pred in preds:
          top_indices = pred.argsort()[-top:][::-1]
          result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
          results.append(result)
          return results


          def is_valid_file(parser, arg):
          """
          Check if arg is a valid file that already exists on the file system.

          Parameters
          ----------
          parser : argparse object
          arg : str

          Returns
          -------
          arg
          """
          arg = os.path.abspath(arg)
          if not os.path.exists(arg):
          parser.error("The file %s does not exist!" % arg)
          else:
          return arg


          def get_parser():
          """Get parser object."""
          from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
          parser = ArgumentParser(description=__doc__,
          formatter_class=ArgumentDefaultsHelpFormatter)
          parser.add_argument("-f", "--file",
          dest="filename",
          type=lambda x: is_valid_file(parser, x),
          help="Classify image",
          metavar="IMAGE",
          required=True)
          return parser


          if __name__ == "__main__":
          args = get_parser().parse_args()

          # Load model
          model = Xception(include_top=True, weights='imagenet')

          img_path = args.filename
          img = image.load_img(img_path, target_size=(224, 224))
          x = image.img_to_array(img)
          x = np.expand_dims(x, axis=0)
          x = preprocess_input(x)
          print('Input image shape:', x.shape)
          t0 = time.time()
          preds = model.predict(x)
          t1 = time.time()
          print("Prediction time: {:0.3f}s".format(t1 - t0))
          for wordnet_id, class_name, prob in decode_predictions(preds)[0]:
          print("{wid}t{prob:>6}%t{name}".format(wid=wordnet_id,
          name=class_name,
          prob="%0.2f" % (prob * 100)))


          Why it works with any size



          Look at the model.summary() of Xception, especially the output shape. Notice the global average pooling layer? Before that, the shape is determined by the input. Meaning until that point, it can be anything.




          Global pooling is another type of transition layer. It applies pooling over the complete feature map size to shrink the input to a constant 1 × 1 feature map and hence allows one network to have different input sizes.




          Source: Me: Analysis and Optimization of Convolutional Neural Network Architectures






          share|improve this answer











          $endgroup$













          • $begingroup$
            Reshaping of what exactly ? Input tensor ? In that case, would not we receive something like that for RGB images: [450, 600, 3] -> [1, 1, 3] ?
            $endgroup$
            – I.D.M
            11 hours ago










          • $begingroup$
            I've edited the example quite a bit. Turns out that you actually don't need to change anything.
            $endgroup$
            – Martin Thoma
            10 hours ago










          • $begingroup$
            Thank you very much for your extended response. I have a few more questions: 1. Why the documentation says that the default input size is 299x299 ? 2. It seems to me that there is some broken formatting at output shape - eg before GlobalAveragePooling2 it should probably be (None, None, None, 2048) instead (None, None, None, 2 3. Should I change only the Dense layer ?
            $endgroup$
            – I.D.M
            9 hours ago


















          1












          $begingroup$

          Have a look at where the reshaping happens. Just before that, you can insert a global average pooling layer in. This way you can handle any size.



          However, I recommend cropping and scamming. Create multiple crops if necessary and average the results. That is likely still faster than using a bigger image.



          How to use Xception



          #!/usr/bin/env python
          # -*- coding: utf-8 -*-
          """See https://martin-thoma.com/image-classification/ for details."""
          from __future__ import print_function

          import numpy as np
          import json
          import os
          import time

          from keras import backend as K
          from keras.preprocessing import image
          from keras.applications.xception import Xception
          from keras.utils.data_utils import get_file

          CLASS_INDEX = None
          CLASS_INDEX_PATH = ('https://s3.amazonaws.com/deep-learning-models/'
          'image-models/imagenet_class_index.json')


          def preprocess_input(x, dim_ordering='default'):
          """
          Standard preprocessing of image data.

          1. Make sure the order of the channels is correct (RGB, BGR, depending on
          the backend)
          2. Mean subtraction by channel.

          Parameters
          ----------
          x : numpy array
          The image
          dim_ordering : string, optional (default: 'default')
          Either 'th' for Theano or 'tf' for Tensorflow

          Returns
          -------
          numpy array
          The preprocessed image
          """
          if dim_ordering == 'default':
          dim_ordering = K.image_dim_ordering()
          assert dim_ordering in {'tf', 'th'}

          if dim_ordering == 'th':
          x[:, 0, :, :] -= 103.939
          x[:, 1, :, :] -= 116.779
          x[:, 2, :, :] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, ::-1, :, :]
          else:
          x[:, :, :, 0] -= 103.939
          x[:, :, :, 1] -= 116.779
          x[:, :, :, 2] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, :, :, ::-1]
          return x


          def decode_predictions(preds, top=5):
          """
          Decode the predictionso of the ImageNet trained network.

          Parameters
          ----------
          preds : numpy array
          top : int
          How many predictions to return

          Returns
          -------
          list of tuples
          e.g. (u'n02206856', u'bee', 0.71072823) for the WordNet identifier,
          the class name and the probability.
          """
          global CLASS_INDEX
          if len(preds.shape) != 2 or preds.shape[1] != 1000:
          raise ValueError('`decode_predictions` expects '
          'a batch of predictions '
          '(i.e. a 2D array of shape (samples, 1000)). '
          'Found array with shape: ' + str(preds.shape))
          if CLASS_INDEX is None:
          fpath = get_file('imagenet_class_index.json',
          CLASS_INDEX_PATH,
          cache_subdir='models')
          CLASS_INDEX = json.load(open(fpath))
          results =
          for pred in preds:
          top_indices = pred.argsort()[-top:][::-1]
          result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
          results.append(result)
          return results


          def is_valid_file(parser, arg):
          """
          Check if arg is a valid file that already exists on the file system.

          Parameters
          ----------
          parser : argparse object
          arg : str

          Returns
          -------
          arg
          """
          arg = os.path.abspath(arg)
          if not os.path.exists(arg):
          parser.error("The file %s does not exist!" % arg)
          else:
          return arg


          def get_parser():
          """Get parser object."""
          from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
          parser = ArgumentParser(description=__doc__,
          formatter_class=ArgumentDefaultsHelpFormatter)
          parser.add_argument("-f", "--file",
          dest="filename",
          type=lambda x: is_valid_file(parser, x),
          help="Classify image",
          metavar="IMAGE",
          required=True)
          return parser


          if __name__ == "__main__":
          args = get_parser().parse_args()

          # Load model
          model = Xception(include_top=True, weights='imagenet')

          img_path = args.filename
          img = image.load_img(img_path, target_size=(224, 224))
          x = image.img_to_array(img)
          x = np.expand_dims(x, axis=0)
          x = preprocess_input(x)
          print('Input image shape:', x.shape)
          t0 = time.time()
          preds = model.predict(x)
          t1 = time.time()
          print("Prediction time: {:0.3f}s".format(t1 - t0))
          for wordnet_id, class_name, prob in decode_predictions(preds)[0]:
          print("{wid}t{prob:>6}%t{name}".format(wid=wordnet_id,
          name=class_name,
          prob="%0.2f" % (prob * 100)))


          Why it works with any size



          Look at the model.summary() of Xception, especially the output shape. Notice the global average pooling layer? Before that, the shape is determined by the input. Meaning until that point, it can be anything.




          Global pooling is another type of transition layer. It applies pooling over the complete feature map size to shrink the input to a constant 1 × 1 feature map and hence allows one network to have different input sizes.




          Source: Me: Analysis and Optimization of Convolutional Neural Network Architectures






          share|improve this answer











          $endgroup$













          • $begingroup$
            Reshaping of what exactly ? Input tensor ? In that case, would not we receive something like that for RGB images: [450, 600, 3] -> [1, 1, 3] ?
            $endgroup$
            – I.D.M
            11 hours ago










          • $begingroup$
            I've edited the example quite a bit. Turns out that you actually don't need to change anything.
            $endgroup$
            – Martin Thoma
            10 hours ago










          • $begingroup$
            Thank you very much for your extended response. I have a few more questions: 1. Why the documentation says that the default input size is 299x299 ? 2. It seems to me that there is some broken formatting at output shape - eg before GlobalAveragePooling2 it should probably be (None, None, None, 2048) instead (None, None, None, 2 3. Should I change only the Dense layer ?
            $endgroup$
            – I.D.M
            9 hours ago
















          1












          1








          1





          $begingroup$

          Have a look at where the reshaping happens. Just before that, you can insert a global average pooling layer in. This way you can handle any size.



          However, I recommend cropping and scamming. Create multiple crops if necessary and average the results. That is likely still faster than using a bigger image.



          How to use Xception



          #!/usr/bin/env python
          # -*- coding: utf-8 -*-
          """See https://martin-thoma.com/image-classification/ for details."""
          from __future__ import print_function

          import numpy as np
          import json
          import os
          import time

          from keras import backend as K
          from keras.preprocessing import image
          from keras.applications.xception import Xception
          from keras.utils.data_utils import get_file

          CLASS_INDEX = None
          CLASS_INDEX_PATH = ('https://s3.amazonaws.com/deep-learning-models/'
          'image-models/imagenet_class_index.json')


          def preprocess_input(x, dim_ordering='default'):
          """
          Standard preprocessing of image data.

          1. Make sure the order of the channels is correct (RGB, BGR, depending on
          the backend)
          2. Mean subtraction by channel.

          Parameters
          ----------
          x : numpy array
          The image
          dim_ordering : string, optional (default: 'default')
          Either 'th' for Theano or 'tf' for Tensorflow

          Returns
          -------
          numpy array
          The preprocessed image
          """
          if dim_ordering == 'default':
          dim_ordering = K.image_dim_ordering()
          assert dim_ordering in {'tf', 'th'}

          if dim_ordering == 'th':
          x[:, 0, :, :] -= 103.939
          x[:, 1, :, :] -= 116.779
          x[:, 2, :, :] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, ::-1, :, :]
          else:
          x[:, :, :, 0] -= 103.939
          x[:, :, :, 1] -= 116.779
          x[:, :, :, 2] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, :, :, ::-1]
          return x


          def decode_predictions(preds, top=5):
          """
          Decode the predictionso of the ImageNet trained network.

          Parameters
          ----------
          preds : numpy array
          top : int
          How many predictions to return

          Returns
          -------
          list of tuples
          e.g. (u'n02206856', u'bee', 0.71072823) for the WordNet identifier,
          the class name and the probability.
          """
          global CLASS_INDEX
          if len(preds.shape) != 2 or preds.shape[1] != 1000:
          raise ValueError('`decode_predictions` expects '
          'a batch of predictions '
          '(i.e. a 2D array of shape (samples, 1000)). '
          'Found array with shape: ' + str(preds.shape))
          if CLASS_INDEX is None:
          fpath = get_file('imagenet_class_index.json',
          CLASS_INDEX_PATH,
          cache_subdir='models')
          CLASS_INDEX = json.load(open(fpath))
          results =
          for pred in preds:
          top_indices = pred.argsort()[-top:][::-1]
          result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
          results.append(result)
          return results


          def is_valid_file(parser, arg):
          """
          Check if arg is a valid file that already exists on the file system.

          Parameters
          ----------
          parser : argparse object
          arg : str

          Returns
          -------
          arg
          """
          arg = os.path.abspath(arg)
          if not os.path.exists(arg):
          parser.error("The file %s does not exist!" % arg)
          else:
          return arg


          def get_parser():
          """Get parser object."""
          from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
          parser = ArgumentParser(description=__doc__,
          formatter_class=ArgumentDefaultsHelpFormatter)
          parser.add_argument("-f", "--file",
          dest="filename",
          type=lambda x: is_valid_file(parser, x),
          help="Classify image",
          metavar="IMAGE",
          required=True)
          return parser


          if __name__ == "__main__":
          args = get_parser().parse_args()

          # Load model
          model = Xception(include_top=True, weights='imagenet')

          img_path = args.filename
          img = image.load_img(img_path, target_size=(224, 224))
          x = image.img_to_array(img)
          x = np.expand_dims(x, axis=0)
          x = preprocess_input(x)
          print('Input image shape:', x.shape)
          t0 = time.time()
          preds = model.predict(x)
          t1 = time.time()
          print("Prediction time: {:0.3f}s".format(t1 - t0))
          for wordnet_id, class_name, prob in decode_predictions(preds)[0]:
          print("{wid}t{prob:>6}%t{name}".format(wid=wordnet_id,
          name=class_name,
          prob="%0.2f" % (prob * 100)))


          Why it works with any size



          Look at the model.summary() of Xception, especially the output shape. Notice the global average pooling layer? Before that, the shape is determined by the input. Meaning until that point, it can be anything.




          Global pooling is another type of transition layer. It applies pooling over the complete feature map size to shrink the input to a constant 1 × 1 feature map and hence allows one network to have different input sizes.




          Source: Me: Analysis and Optimization of Convolutional Neural Network Architectures






          share|improve this answer











          $endgroup$



          Have a look at where the reshaping happens. Just before that, you can insert a global average pooling layer in. This way you can handle any size.



          However, I recommend cropping and scamming. Create multiple crops if necessary and average the results. That is likely still faster than using a bigger image.



          How to use Xception



          #!/usr/bin/env python
          # -*- coding: utf-8 -*-
          """See https://martin-thoma.com/image-classification/ for details."""
          from __future__ import print_function

          import numpy as np
          import json
          import os
          import time

          from keras import backend as K
          from keras.preprocessing import image
          from keras.applications.xception import Xception
          from keras.utils.data_utils import get_file

          CLASS_INDEX = None
          CLASS_INDEX_PATH = ('https://s3.amazonaws.com/deep-learning-models/'
          'image-models/imagenet_class_index.json')


          def preprocess_input(x, dim_ordering='default'):
          """
          Standard preprocessing of image data.

          1. Make sure the order of the channels is correct (RGB, BGR, depending on
          the backend)
          2. Mean subtraction by channel.

          Parameters
          ----------
          x : numpy array
          The image
          dim_ordering : string, optional (default: 'default')
          Either 'th' for Theano or 'tf' for Tensorflow

          Returns
          -------
          numpy array
          The preprocessed image
          """
          if dim_ordering == 'default':
          dim_ordering = K.image_dim_ordering()
          assert dim_ordering in {'tf', 'th'}

          if dim_ordering == 'th':
          x[:, 0, :, :] -= 103.939
          x[:, 1, :, :] -= 116.779
          x[:, 2, :, :] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, ::-1, :, :]
          else:
          x[:, :, :, 0] -= 103.939
          x[:, :, :, 1] -= 116.779
          x[:, :, :, 2] -= 123.68
          # 'RGB'->'BGR'
          x = x[:, :, :, ::-1]
          return x


          def decode_predictions(preds, top=5):
          """
          Decode the predictionso of the ImageNet trained network.

          Parameters
          ----------
          preds : numpy array
          top : int
          How many predictions to return

          Returns
          -------
          list of tuples
          e.g. (u'n02206856', u'bee', 0.71072823) for the WordNet identifier,
          the class name and the probability.
          """
          global CLASS_INDEX
          if len(preds.shape) != 2 or preds.shape[1] != 1000:
          raise ValueError('`decode_predictions` expects '
          'a batch of predictions '
          '(i.e. a 2D array of shape (samples, 1000)). '
          'Found array with shape: ' + str(preds.shape))
          if CLASS_INDEX is None:
          fpath = get_file('imagenet_class_index.json',
          CLASS_INDEX_PATH,
          cache_subdir='models')
          CLASS_INDEX = json.load(open(fpath))
          results =
          for pred in preds:
          top_indices = pred.argsort()[-top:][::-1]
          result = [tuple(CLASS_INDEX[str(i)]) + (pred[i],) for i in top_indices]
          results.append(result)
          return results


          def is_valid_file(parser, arg):
          """
          Check if arg is a valid file that already exists on the file system.

          Parameters
          ----------
          parser : argparse object
          arg : str

          Returns
          -------
          arg
          """
          arg = os.path.abspath(arg)
          if not os.path.exists(arg):
          parser.error("The file %s does not exist!" % arg)
          else:
          return arg


          def get_parser():
          """Get parser object."""
          from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
          parser = ArgumentParser(description=__doc__,
          formatter_class=ArgumentDefaultsHelpFormatter)
          parser.add_argument("-f", "--file",
          dest="filename",
          type=lambda x: is_valid_file(parser, x),
          help="Classify image",
          metavar="IMAGE",
          required=True)
          return parser


          if __name__ == "__main__":
          args = get_parser().parse_args()

          # Load model
          model = Xception(include_top=True, weights='imagenet')

          img_path = args.filename
          img = image.load_img(img_path, target_size=(224, 224))
          x = image.img_to_array(img)
          x = np.expand_dims(x, axis=0)
          x = preprocess_input(x)
          print('Input image shape:', x.shape)
          t0 = time.time()
          preds = model.predict(x)
          t1 = time.time()
          print("Prediction time: {:0.3f}s".format(t1 - t0))
          for wordnet_id, class_name, prob in decode_predictions(preds)[0]:
          print("{wid}t{prob:>6}%t{name}".format(wid=wordnet_id,
          name=class_name,
          prob="%0.2f" % (prob * 100)))


          Why it works with any size



          Look at the model.summary() of Xception, especially the output shape. Notice the global average pooling layer? Before that, the shape is determined by the input. Meaning until that point, it can be anything.




          Global pooling is another type of transition layer. It applies pooling over the complete feature map size to shrink the input to a constant 1 × 1 feature map and hence allows one network to have different input sizes.




          Source: Me: Analysis and Optimization of Convolutional Neural Network Architectures







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 10 hours ago

























          answered 12 hours ago









          Martin ThomaMartin Thoma

          6,1501353127




          6,1501353127












          • $begingroup$
            Reshaping of what exactly ? Input tensor ? In that case, would not we receive something like that for RGB images: [450, 600, 3] -> [1, 1, 3] ?
            $endgroup$
            – I.D.M
            11 hours ago










          • $begingroup$
            I've edited the example quite a bit. Turns out that you actually don't need to change anything.
            $endgroup$
            – Martin Thoma
            10 hours ago










          • $begingroup$
            Thank you very much for your extended response. I have a few more questions: 1. Why the documentation says that the default input size is 299x299 ? 2. It seems to me that there is some broken formatting at output shape - eg before GlobalAveragePooling2 it should probably be (None, None, None, 2048) instead (None, None, None, 2 3. Should I change only the Dense layer ?
            $endgroup$
            – I.D.M
            9 hours ago




















          • $begingroup$
            Reshaping of what exactly ? Input tensor ? In that case, would not we receive something like that for RGB images: [450, 600, 3] -> [1, 1, 3] ?
            $endgroup$
            – I.D.M
            11 hours ago










          • $begingroup$
            I've edited the example quite a bit. Turns out that you actually don't need to change anything.
            $endgroup$
            – Martin Thoma
            10 hours ago










          • $begingroup$
            Thank you very much for your extended response. I have a few more questions: 1. Why the documentation says that the default input size is 299x299 ? 2. It seems to me that there is some broken formatting at output shape - eg before GlobalAveragePooling2 it should probably be (None, None, None, 2048) instead (None, None, None, 2 3. Should I change only the Dense layer ?
            $endgroup$
            – I.D.M
            9 hours ago


















          $begingroup$
          Reshaping of what exactly ? Input tensor ? In that case, would not we receive something like that for RGB images: [450, 600, 3] -> [1, 1, 3] ?
          $endgroup$
          – I.D.M
          11 hours ago




          $begingroup$
          Reshaping of what exactly ? Input tensor ? In that case, would not we receive something like that for RGB images: [450, 600, 3] -> [1, 1, 3] ?
          $endgroup$
          – I.D.M
          11 hours ago












          $begingroup$
          I've edited the example quite a bit. Turns out that you actually don't need to change anything.
          $endgroup$
          – Martin Thoma
          10 hours ago




          $begingroup$
          I've edited the example quite a bit. Turns out that you actually don't need to change anything.
          $endgroup$
          – Martin Thoma
          10 hours ago












          $begingroup$
          Thank you very much for your extended response. I have a few more questions: 1. Why the documentation says that the default input size is 299x299 ? 2. It seems to me that there is some broken formatting at output shape - eg before GlobalAveragePooling2 it should probably be (None, None, None, 2048) instead (None, None, None, 2 3. Should I change only the Dense layer ?
          $endgroup$
          – I.D.M
          9 hours ago






          $begingroup$
          Thank you very much for your extended response. I have a few more questions: 1. Why the documentation says that the default input size is 299x299 ? 2. It seems to me that there is some broken formatting at output shape - eg before GlobalAveragePooling2 it should probably be (None, None, None, 2048) instead (None, None, None, 2 3. Should I change only the Dense layer ?
          $endgroup$
          – I.D.M
          9 hours ago




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45393%2fkeras-applications-using-images-larger-than-the-default-size%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to label and detect the document text images

          Tabula Rosettana

          Aureus (color)