Deus solis

Multi tool use

Amaterasu, dea solis Iaponensis.
Deus vel dea solis est cuiusdammodi numinis qui solem vel aspectum solis repraesentat talis Phoebus vel Helios Graece vel Ra Aegypte qualis, ratione percipi aliqua virtute vel potestate. Numina solares et culta suarum per varias historias notas inveniri possunt.
Dei solis |
Mythologia Aegyptia : Ra
Mythologia Graeca: Helios
Mythologia Romana: Sol Invictus
Mythologia Nordica: Sól
- Mythologia Azteca: Tonatiuh
- Mythologia Inca: Inti
Mythologia Iaponica: Amaterasu
Bibliographia |
Historia Augusta, 1.5
- Pagina Encyclopediae Britannicae de cultu solaris
- Azize, Joseph (2005) The Phoenician Solar Theology. Piscataway, NJ: Gorgias Press. ISBN 1-59333-210-6.
- Olcott, William Tyler (1914/2003) Sun Lore of All Ages: A Collection of Myths and Legends Concerning the Sun and Its Worship Adamant Media Corporation. ISBN 0-543-96027-7.
- Hawkes, Jacquetta Man and the Sun Gaithersburg, MD, USA:1962 SolPub Co.
- McCrickard, Janet. "Eclipse of the Sun: An Investigation into Sun and Moon Myths." Gothic Image Publications. ISBN 0-906362-13-X.
- Monaghan, Patricia. "O Mother Sun: A New View of the Cosmic Feminine." Crossing Press, 1994. ISBN 0-89594-722-6
- Ranjan Kumar Singh. Surya: The God and His Abode. Parijat. ISBN 81-903561-7-8
- Richard, J.C.(1976) “Le culte de Sol et les Aurelii. A propos de Paul Fest. p. 22 L.”, in: Mélanges offerts à Jacques Heurgon. L'Italie préromaine et la Rome républicaine, Rome.
De Sole Invicto |
- Brent, Allen. The Imperial Cult and the Development of Church Order: Concepts and Images of Authority in Paganism and Early Christianity before the Age of Cyprian. Lugduni Batavorum: Brill, 1999.
- Halsberghe, Gaston H. The Cult of Sol Invictus. Lugduni Batavorum: Brill, 1972.
- Arcella, S., I Misteri del sole, Controcorrente, Napoli, 2002
RUkaV,X ejmFZG xSlYDcidkHvVvnPnv,Q8,DB,D
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...