How to filter this signal to get a heartbeat signal?












2












$begingroup$


I am giving my first steps in data analysis, gathering/cleaning.



To learn, I am trying to create a simple code that can detect heartbeats from color variations from the image coming from the camera on the iPhone.



This is what I have done so far:




  1. I have created a code that detects faces and cuts them from the image.

  2. then I get the average color from that face image.

  3. Because the values are grabbed at irregular time intervals, I interpolate the data. Now I have a series of values "taken" at regular intervals.


Plotting the data I have this:



enter image description here



I think I am seeing something that looks like heartbeats there.



To confirm that I am not seeing artifacts from the camera, I sample a rectangle from the background and I get the same color with very little random variation. The background color is stable and shows barely any variation.




  1. Now, I apply a Direct Cosine Transform to the data and get this:


enter image description here



The DCT has negative vales.



The two first items of the DCT are peaks, at t=0 and t=0.10482311 seconds.



I read a paper where the researcher says heartbeats occur between 0.4 and 4Hz. I suppose this has a relation why the first two DCT items are peaks...



What do I do now?



I have tried to apply a threshold to zero every term from the DCT below 150 and do an inverse DCT to reconstruct the signal and got this



enter image description here



I have reduced the threshold to 85 and got this



enter image description here



I am not sure if I see a heartbeat there. I mean, the peaks where the beats start.



This is the data at regular time intervals I have (256 samples):



17.0
14.151599
11.303198
8.454798
5.74406
7.5946655
12.173319
18.0
18.0
7.448537
18.0
16.36569
12.0000515
13.0
13.0
13.0
13.0
12.442261
9.134232
11.052017
12.0
7.605861
10.42025
11.911684
3.4419365
2.0
2.0
14.082303
16.227417
9.639368
7.0
3.4693644
5.0578203
7.0
14.859163
8.363442
7.876806
16.721855
16.367476
13.054573
17.416235
6.6276655
11.617707
12.0
6.3224463
11.111255
14.0
14.0
14.0
14.0
8.705125
17.478954
18.0
17.259813
14.371727
12.0
12.0
17.304781
18.0
18.0
2.6055841
9.789778
8.290463
6.3248563
2.3246787
12.944895
2.999961
8.443108
16.994041
7.714527
11.132567
2.2226758
5.6030903
12.528458
16.932209
16.087227
7.9563236
16.43404
8.239223
17.576452
12.102208
15.194642
1.0
1.0
1.0
1.0
1.0
1.0
1.7313459
17.479614
11.889918
11.0
11.0
14.0
14.0
13.802156
12.975004
6.840872
14.405505
7.928815
1.4836411
7.193712
15.371663
6.2666273
6.1682196
17.532732
16.0
15.034918
9.363262
1.0
4.654352
17.0
17.0
17.0
17.0
10.1624565
2.696946
13.607519
10.2923975
1.0
1.49984
9.996923
7.0500054
17.0
17.0
17.343903
13.191299
1.6610342
5.2127213
7.0
5.6532416
3.0295517
12.250117
12.687657
2.9297333
7.463814
9.5274105
13.640531
18.061134
16.376305
5.9621263
4.2103305
7.751727
7.023478
2.4116693
14.6888685
11.718729
4.0103664
12.0
8.606849
1.0
1.0
7.0
7.0
8.867684
12.0
12.0
9.598275
4.9731455
2.0
2.0
2.0
2.4965348
4.843401
5.4067893
3.655766
7.0
11.899609
11.855668
10.36767
16.59431
7.843425
1.9749169
8.829407
12.43066
11.205647
16.514818
17.0
13.328903
11.462145
12.0
12.0
12.0
12.502206
15.606055
18.0
18.0
13.699917
2.0
2.0
8.122738
12.0342
12.311193
9.434023
8.419968
8.64551
2.1631317
7.9250226
13.173435
3.0252013
1.0
1.0
1.0
1.0
1.0
3.7013192
6.0
6.0
6.3827076
7.0
6.570015
6.0
6.0
6.0
6.0
2.8011405
7.071625
15.575444
17.0
17.0
6.811758
1.0
4.5509486
5.3095756
10.288496
13.577595
2.493825
10.179988
12.0
6.3059773
7.9304085
14.911688
8.452748
2.8948724
10.117218
12.0
12.0
15.008322
16.0
7.473282
4.4403195
12.0
12.0
8.330021
6.0
6.0
6.0
11.515245
0.946867
0.83356774
0.95877224
0.05619842
15.221931
16.469358
5.231963
1.7867849


and these are the regular time intervals



0.0
0.03317536
0.06635072
0.09952608
0.13270144
0.1658768
0.19905217
0.23222753
0.26540288
0.29857823
0.33175358
0.36492893
0.39810428
0.43127963
0.46445498
0.49763033
0.5308057
0.56398106
0.5971564
0.63033175
0.6635071
0.69668245
0.7298578
0.76303315
0.7962085
0.82938385
0.8625592
0.89573455
0.9289099
0.96208525
0.9952606
1.028436
1.0616113
1.0947866
1.127962
1.1611373
1.1943127
1.227488
1.2606634
1.2938387
1.3270141
1.3601894
1.3933648
1.4265401
1.4597155
1.4928908
1.5260662
1.5592415
1.5924169
1.6255922
1.6587676
1.6919429
1.7251183
1.7582936
1.791469
1.8246443
1.8578197
1.890995
1.9241704
1.9573457
1.9905211
2.0236964
2.056872
2.0900474
2.1232228
2.1563983
2.1895738
2.2227492
2.2559247
2.2891002
2.3222756
2.355451
2.3886266
2.421802
2.4549775
2.488153
2.5213284
2.554504
2.5876794
2.6208549
2.6540303
2.6872058
2.7203813
2.7535567
2.7867322
2.8199077
2.8530831
2.8862586
2.919434
2.9526095
2.985785
3.0189605
3.052136
3.0853114
3.118487
3.1516623
3.1848378
3.2180133
3.2511888
3.2843642
3.3175397
3.3507152
3.3838906
3.417066
3.4502416
3.483417
3.5165925
3.549768
3.5829434
3.616119
3.6492944
3.6824698
3.7156453
3.7488208
3.7819963
3.8151717
3.8483472
3.8815227
3.9146981
3.9478736
3.981049
4.0142245
4.0474
4.0805755
4.113751
4.1469264
4.180102
4.2132773
4.246453
4.2796283
4.3128037
4.345979
4.3791547
4.41233
4.4455056
4.478681
4.5118566
4.545032
4.5782075
4.611383
4.6445584
4.677734
4.7109094
4.744085
4.7772603
4.810436
4.8436112
4.8767867
4.909962
4.9431376
4.976313
5.0094886
5.042664
5.0758395
5.109015
5.1421905
5.175366
5.2085414
5.241717
5.2748923
5.308068
5.3412433
5.3744187
5.407594
5.4407697
5.473945
5.5071206
5.540296
5.5734715
5.606647
5.6398225
5.672998
5.7061734
5.739349
5.7725244
5.8057
5.8388753
5.872051
5.905226
5.9384017
5.971577
6.0047526
6.037928
6.0711036
6.104279
6.1374545
6.17063
6.2038054
6.236981
6.2701564
6.303332
6.3365073
6.369683
6.4028583
6.4360337
6.469209
6.5023847
6.53556
6.5687356
6.601911
6.6350865
6.668262
6.7014375
6.734613
6.7677884
6.800964
6.8341393
6.867315
6.9004903
6.9336658
6.966841
7.0000167
7.033192
7.0663676
7.099543
7.1327186
7.165894
7.1990695
7.232245
7.2654204
7.298596
7.3317714
7.364947
7.3981223
7.431298
7.4644732
7.4976487
7.530824
7.5639997
7.597175
7.6303506
7.663526
7.6967015
7.729877
7.7630525
7.796228
7.8294034
7.862579
7.8957543
7.92893
7.9621053
7.9952807
8.028456
8.061631
8.094807
8.127982
8.161158
8.194333
8.227509
8.260684
8.2938595
8.327035
8.36021
8.393386
8.426561
8.459737









share|improve this question









New contributor




SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    2












    $begingroup$


    I am giving my first steps in data analysis, gathering/cleaning.



    To learn, I am trying to create a simple code that can detect heartbeats from color variations from the image coming from the camera on the iPhone.



    This is what I have done so far:




    1. I have created a code that detects faces and cuts them from the image.

    2. then I get the average color from that face image.

    3. Because the values are grabbed at irregular time intervals, I interpolate the data. Now I have a series of values "taken" at regular intervals.


    Plotting the data I have this:



    enter image description here



    I think I am seeing something that looks like heartbeats there.



    To confirm that I am not seeing artifacts from the camera, I sample a rectangle from the background and I get the same color with very little random variation. The background color is stable and shows barely any variation.




    1. Now, I apply a Direct Cosine Transform to the data and get this:


    enter image description here



    The DCT has negative vales.



    The two first items of the DCT are peaks, at t=0 and t=0.10482311 seconds.



    I read a paper where the researcher says heartbeats occur between 0.4 and 4Hz. I suppose this has a relation why the first two DCT items are peaks...



    What do I do now?



    I have tried to apply a threshold to zero every term from the DCT below 150 and do an inverse DCT to reconstruct the signal and got this



    enter image description here



    I have reduced the threshold to 85 and got this



    enter image description here



    I am not sure if I see a heartbeat there. I mean, the peaks where the beats start.



    This is the data at regular time intervals I have (256 samples):



    17.0
    14.151599
    11.303198
    8.454798
    5.74406
    7.5946655
    12.173319
    18.0
    18.0
    7.448537
    18.0
    16.36569
    12.0000515
    13.0
    13.0
    13.0
    13.0
    12.442261
    9.134232
    11.052017
    12.0
    7.605861
    10.42025
    11.911684
    3.4419365
    2.0
    2.0
    14.082303
    16.227417
    9.639368
    7.0
    3.4693644
    5.0578203
    7.0
    14.859163
    8.363442
    7.876806
    16.721855
    16.367476
    13.054573
    17.416235
    6.6276655
    11.617707
    12.0
    6.3224463
    11.111255
    14.0
    14.0
    14.0
    14.0
    8.705125
    17.478954
    18.0
    17.259813
    14.371727
    12.0
    12.0
    17.304781
    18.0
    18.0
    2.6055841
    9.789778
    8.290463
    6.3248563
    2.3246787
    12.944895
    2.999961
    8.443108
    16.994041
    7.714527
    11.132567
    2.2226758
    5.6030903
    12.528458
    16.932209
    16.087227
    7.9563236
    16.43404
    8.239223
    17.576452
    12.102208
    15.194642
    1.0
    1.0
    1.0
    1.0
    1.0
    1.0
    1.7313459
    17.479614
    11.889918
    11.0
    11.0
    14.0
    14.0
    13.802156
    12.975004
    6.840872
    14.405505
    7.928815
    1.4836411
    7.193712
    15.371663
    6.2666273
    6.1682196
    17.532732
    16.0
    15.034918
    9.363262
    1.0
    4.654352
    17.0
    17.0
    17.0
    17.0
    10.1624565
    2.696946
    13.607519
    10.2923975
    1.0
    1.49984
    9.996923
    7.0500054
    17.0
    17.0
    17.343903
    13.191299
    1.6610342
    5.2127213
    7.0
    5.6532416
    3.0295517
    12.250117
    12.687657
    2.9297333
    7.463814
    9.5274105
    13.640531
    18.061134
    16.376305
    5.9621263
    4.2103305
    7.751727
    7.023478
    2.4116693
    14.6888685
    11.718729
    4.0103664
    12.0
    8.606849
    1.0
    1.0
    7.0
    7.0
    8.867684
    12.0
    12.0
    9.598275
    4.9731455
    2.0
    2.0
    2.0
    2.4965348
    4.843401
    5.4067893
    3.655766
    7.0
    11.899609
    11.855668
    10.36767
    16.59431
    7.843425
    1.9749169
    8.829407
    12.43066
    11.205647
    16.514818
    17.0
    13.328903
    11.462145
    12.0
    12.0
    12.0
    12.502206
    15.606055
    18.0
    18.0
    13.699917
    2.0
    2.0
    8.122738
    12.0342
    12.311193
    9.434023
    8.419968
    8.64551
    2.1631317
    7.9250226
    13.173435
    3.0252013
    1.0
    1.0
    1.0
    1.0
    1.0
    3.7013192
    6.0
    6.0
    6.3827076
    7.0
    6.570015
    6.0
    6.0
    6.0
    6.0
    2.8011405
    7.071625
    15.575444
    17.0
    17.0
    6.811758
    1.0
    4.5509486
    5.3095756
    10.288496
    13.577595
    2.493825
    10.179988
    12.0
    6.3059773
    7.9304085
    14.911688
    8.452748
    2.8948724
    10.117218
    12.0
    12.0
    15.008322
    16.0
    7.473282
    4.4403195
    12.0
    12.0
    8.330021
    6.0
    6.0
    6.0
    11.515245
    0.946867
    0.83356774
    0.95877224
    0.05619842
    15.221931
    16.469358
    5.231963
    1.7867849


    and these are the regular time intervals



    0.0
    0.03317536
    0.06635072
    0.09952608
    0.13270144
    0.1658768
    0.19905217
    0.23222753
    0.26540288
    0.29857823
    0.33175358
    0.36492893
    0.39810428
    0.43127963
    0.46445498
    0.49763033
    0.5308057
    0.56398106
    0.5971564
    0.63033175
    0.6635071
    0.69668245
    0.7298578
    0.76303315
    0.7962085
    0.82938385
    0.8625592
    0.89573455
    0.9289099
    0.96208525
    0.9952606
    1.028436
    1.0616113
    1.0947866
    1.127962
    1.1611373
    1.1943127
    1.227488
    1.2606634
    1.2938387
    1.3270141
    1.3601894
    1.3933648
    1.4265401
    1.4597155
    1.4928908
    1.5260662
    1.5592415
    1.5924169
    1.6255922
    1.6587676
    1.6919429
    1.7251183
    1.7582936
    1.791469
    1.8246443
    1.8578197
    1.890995
    1.9241704
    1.9573457
    1.9905211
    2.0236964
    2.056872
    2.0900474
    2.1232228
    2.1563983
    2.1895738
    2.2227492
    2.2559247
    2.2891002
    2.3222756
    2.355451
    2.3886266
    2.421802
    2.4549775
    2.488153
    2.5213284
    2.554504
    2.5876794
    2.6208549
    2.6540303
    2.6872058
    2.7203813
    2.7535567
    2.7867322
    2.8199077
    2.8530831
    2.8862586
    2.919434
    2.9526095
    2.985785
    3.0189605
    3.052136
    3.0853114
    3.118487
    3.1516623
    3.1848378
    3.2180133
    3.2511888
    3.2843642
    3.3175397
    3.3507152
    3.3838906
    3.417066
    3.4502416
    3.483417
    3.5165925
    3.549768
    3.5829434
    3.616119
    3.6492944
    3.6824698
    3.7156453
    3.7488208
    3.7819963
    3.8151717
    3.8483472
    3.8815227
    3.9146981
    3.9478736
    3.981049
    4.0142245
    4.0474
    4.0805755
    4.113751
    4.1469264
    4.180102
    4.2132773
    4.246453
    4.2796283
    4.3128037
    4.345979
    4.3791547
    4.41233
    4.4455056
    4.478681
    4.5118566
    4.545032
    4.5782075
    4.611383
    4.6445584
    4.677734
    4.7109094
    4.744085
    4.7772603
    4.810436
    4.8436112
    4.8767867
    4.909962
    4.9431376
    4.976313
    5.0094886
    5.042664
    5.0758395
    5.109015
    5.1421905
    5.175366
    5.2085414
    5.241717
    5.2748923
    5.308068
    5.3412433
    5.3744187
    5.407594
    5.4407697
    5.473945
    5.5071206
    5.540296
    5.5734715
    5.606647
    5.6398225
    5.672998
    5.7061734
    5.739349
    5.7725244
    5.8057
    5.8388753
    5.872051
    5.905226
    5.9384017
    5.971577
    6.0047526
    6.037928
    6.0711036
    6.104279
    6.1374545
    6.17063
    6.2038054
    6.236981
    6.2701564
    6.303332
    6.3365073
    6.369683
    6.4028583
    6.4360337
    6.469209
    6.5023847
    6.53556
    6.5687356
    6.601911
    6.6350865
    6.668262
    6.7014375
    6.734613
    6.7677884
    6.800964
    6.8341393
    6.867315
    6.9004903
    6.9336658
    6.966841
    7.0000167
    7.033192
    7.0663676
    7.099543
    7.1327186
    7.165894
    7.1990695
    7.232245
    7.2654204
    7.298596
    7.3317714
    7.364947
    7.3981223
    7.431298
    7.4644732
    7.4976487
    7.530824
    7.5639997
    7.597175
    7.6303506
    7.663526
    7.6967015
    7.729877
    7.7630525
    7.796228
    7.8294034
    7.862579
    7.8957543
    7.92893
    7.9621053
    7.9952807
    8.028456
    8.061631
    8.094807
    8.127982
    8.161158
    8.194333
    8.227509
    8.260684
    8.2938595
    8.327035
    8.36021
    8.393386
    8.426561
    8.459737









    share|improve this question









    New contributor




    SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      2












      2








      2





      $begingroup$


      I am giving my first steps in data analysis, gathering/cleaning.



      To learn, I am trying to create a simple code that can detect heartbeats from color variations from the image coming from the camera on the iPhone.



      This is what I have done so far:




      1. I have created a code that detects faces and cuts them from the image.

      2. then I get the average color from that face image.

      3. Because the values are grabbed at irregular time intervals, I interpolate the data. Now I have a series of values "taken" at regular intervals.


      Plotting the data I have this:



      enter image description here



      I think I am seeing something that looks like heartbeats there.



      To confirm that I am not seeing artifacts from the camera, I sample a rectangle from the background and I get the same color with very little random variation. The background color is stable and shows barely any variation.




      1. Now, I apply a Direct Cosine Transform to the data and get this:


      enter image description here



      The DCT has negative vales.



      The two first items of the DCT are peaks, at t=0 and t=0.10482311 seconds.



      I read a paper where the researcher says heartbeats occur between 0.4 and 4Hz. I suppose this has a relation why the first two DCT items are peaks...



      What do I do now?



      I have tried to apply a threshold to zero every term from the DCT below 150 and do an inverse DCT to reconstruct the signal and got this



      enter image description here



      I have reduced the threshold to 85 and got this



      enter image description here



      I am not sure if I see a heartbeat there. I mean, the peaks where the beats start.



      This is the data at regular time intervals I have (256 samples):



      17.0
      14.151599
      11.303198
      8.454798
      5.74406
      7.5946655
      12.173319
      18.0
      18.0
      7.448537
      18.0
      16.36569
      12.0000515
      13.0
      13.0
      13.0
      13.0
      12.442261
      9.134232
      11.052017
      12.0
      7.605861
      10.42025
      11.911684
      3.4419365
      2.0
      2.0
      14.082303
      16.227417
      9.639368
      7.0
      3.4693644
      5.0578203
      7.0
      14.859163
      8.363442
      7.876806
      16.721855
      16.367476
      13.054573
      17.416235
      6.6276655
      11.617707
      12.0
      6.3224463
      11.111255
      14.0
      14.0
      14.0
      14.0
      8.705125
      17.478954
      18.0
      17.259813
      14.371727
      12.0
      12.0
      17.304781
      18.0
      18.0
      2.6055841
      9.789778
      8.290463
      6.3248563
      2.3246787
      12.944895
      2.999961
      8.443108
      16.994041
      7.714527
      11.132567
      2.2226758
      5.6030903
      12.528458
      16.932209
      16.087227
      7.9563236
      16.43404
      8.239223
      17.576452
      12.102208
      15.194642
      1.0
      1.0
      1.0
      1.0
      1.0
      1.0
      1.7313459
      17.479614
      11.889918
      11.0
      11.0
      14.0
      14.0
      13.802156
      12.975004
      6.840872
      14.405505
      7.928815
      1.4836411
      7.193712
      15.371663
      6.2666273
      6.1682196
      17.532732
      16.0
      15.034918
      9.363262
      1.0
      4.654352
      17.0
      17.0
      17.0
      17.0
      10.1624565
      2.696946
      13.607519
      10.2923975
      1.0
      1.49984
      9.996923
      7.0500054
      17.0
      17.0
      17.343903
      13.191299
      1.6610342
      5.2127213
      7.0
      5.6532416
      3.0295517
      12.250117
      12.687657
      2.9297333
      7.463814
      9.5274105
      13.640531
      18.061134
      16.376305
      5.9621263
      4.2103305
      7.751727
      7.023478
      2.4116693
      14.6888685
      11.718729
      4.0103664
      12.0
      8.606849
      1.0
      1.0
      7.0
      7.0
      8.867684
      12.0
      12.0
      9.598275
      4.9731455
      2.0
      2.0
      2.0
      2.4965348
      4.843401
      5.4067893
      3.655766
      7.0
      11.899609
      11.855668
      10.36767
      16.59431
      7.843425
      1.9749169
      8.829407
      12.43066
      11.205647
      16.514818
      17.0
      13.328903
      11.462145
      12.0
      12.0
      12.0
      12.502206
      15.606055
      18.0
      18.0
      13.699917
      2.0
      2.0
      8.122738
      12.0342
      12.311193
      9.434023
      8.419968
      8.64551
      2.1631317
      7.9250226
      13.173435
      3.0252013
      1.0
      1.0
      1.0
      1.0
      1.0
      3.7013192
      6.0
      6.0
      6.3827076
      7.0
      6.570015
      6.0
      6.0
      6.0
      6.0
      2.8011405
      7.071625
      15.575444
      17.0
      17.0
      6.811758
      1.0
      4.5509486
      5.3095756
      10.288496
      13.577595
      2.493825
      10.179988
      12.0
      6.3059773
      7.9304085
      14.911688
      8.452748
      2.8948724
      10.117218
      12.0
      12.0
      15.008322
      16.0
      7.473282
      4.4403195
      12.0
      12.0
      8.330021
      6.0
      6.0
      6.0
      11.515245
      0.946867
      0.83356774
      0.95877224
      0.05619842
      15.221931
      16.469358
      5.231963
      1.7867849


      and these are the regular time intervals



      0.0
      0.03317536
      0.06635072
      0.09952608
      0.13270144
      0.1658768
      0.19905217
      0.23222753
      0.26540288
      0.29857823
      0.33175358
      0.36492893
      0.39810428
      0.43127963
      0.46445498
      0.49763033
      0.5308057
      0.56398106
      0.5971564
      0.63033175
      0.6635071
      0.69668245
      0.7298578
      0.76303315
      0.7962085
      0.82938385
      0.8625592
      0.89573455
      0.9289099
      0.96208525
      0.9952606
      1.028436
      1.0616113
      1.0947866
      1.127962
      1.1611373
      1.1943127
      1.227488
      1.2606634
      1.2938387
      1.3270141
      1.3601894
      1.3933648
      1.4265401
      1.4597155
      1.4928908
      1.5260662
      1.5592415
      1.5924169
      1.6255922
      1.6587676
      1.6919429
      1.7251183
      1.7582936
      1.791469
      1.8246443
      1.8578197
      1.890995
      1.9241704
      1.9573457
      1.9905211
      2.0236964
      2.056872
      2.0900474
      2.1232228
      2.1563983
      2.1895738
      2.2227492
      2.2559247
      2.2891002
      2.3222756
      2.355451
      2.3886266
      2.421802
      2.4549775
      2.488153
      2.5213284
      2.554504
      2.5876794
      2.6208549
      2.6540303
      2.6872058
      2.7203813
      2.7535567
      2.7867322
      2.8199077
      2.8530831
      2.8862586
      2.919434
      2.9526095
      2.985785
      3.0189605
      3.052136
      3.0853114
      3.118487
      3.1516623
      3.1848378
      3.2180133
      3.2511888
      3.2843642
      3.3175397
      3.3507152
      3.3838906
      3.417066
      3.4502416
      3.483417
      3.5165925
      3.549768
      3.5829434
      3.616119
      3.6492944
      3.6824698
      3.7156453
      3.7488208
      3.7819963
      3.8151717
      3.8483472
      3.8815227
      3.9146981
      3.9478736
      3.981049
      4.0142245
      4.0474
      4.0805755
      4.113751
      4.1469264
      4.180102
      4.2132773
      4.246453
      4.2796283
      4.3128037
      4.345979
      4.3791547
      4.41233
      4.4455056
      4.478681
      4.5118566
      4.545032
      4.5782075
      4.611383
      4.6445584
      4.677734
      4.7109094
      4.744085
      4.7772603
      4.810436
      4.8436112
      4.8767867
      4.909962
      4.9431376
      4.976313
      5.0094886
      5.042664
      5.0758395
      5.109015
      5.1421905
      5.175366
      5.2085414
      5.241717
      5.2748923
      5.308068
      5.3412433
      5.3744187
      5.407594
      5.4407697
      5.473945
      5.5071206
      5.540296
      5.5734715
      5.606647
      5.6398225
      5.672998
      5.7061734
      5.739349
      5.7725244
      5.8057
      5.8388753
      5.872051
      5.905226
      5.9384017
      5.971577
      6.0047526
      6.037928
      6.0711036
      6.104279
      6.1374545
      6.17063
      6.2038054
      6.236981
      6.2701564
      6.303332
      6.3365073
      6.369683
      6.4028583
      6.4360337
      6.469209
      6.5023847
      6.53556
      6.5687356
      6.601911
      6.6350865
      6.668262
      6.7014375
      6.734613
      6.7677884
      6.800964
      6.8341393
      6.867315
      6.9004903
      6.9336658
      6.966841
      7.0000167
      7.033192
      7.0663676
      7.099543
      7.1327186
      7.165894
      7.1990695
      7.232245
      7.2654204
      7.298596
      7.3317714
      7.364947
      7.3981223
      7.431298
      7.4644732
      7.4976487
      7.530824
      7.5639997
      7.597175
      7.6303506
      7.663526
      7.6967015
      7.729877
      7.7630525
      7.796228
      7.8294034
      7.862579
      7.8957543
      7.92893
      7.9621053
      7.9952807
      8.028456
      8.061631
      8.094807
      8.127982
      8.161158
      8.194333
      8.227509
      8.260684
      8.2938595
      8.327035
      8.36021
      8.393386
      8.426561
      8.459737









      share|improve this question









      New contributor




      SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I am giving my first steps in data analysis, gathering/cleaning.



      To learn, I am trying to create a simple code that can detect heartbeats from color variations from the image coming from the camera on the iPhone.



      This is what I have done so far:




      1. I have created a code that detects faces and cuts them from the image.

      2. then I get the average color from that face image.

      3. Because the values are grabbed at irregular time intervals, I interpolate the data. Now I have a series of values "taken" at regular intervals.


      Plotting the data I have this:



      enter image description here



      I think I am seeing something that looks like heartbeats there.



      To confirm that I am not seeing artifacts from the camera, I sample a rectangle from the background and I get the same color with very little random variation. The background color is stable and shows barely any variation.




      1. Now, I apply a Direct Cosine Transform to the data and get this:


      enter image description here



      The DCT has negative vales.



      The two first items of the DCT are peaks, at t=0 and t=0.10482311 seconds.



      I read a paper where the researcher says heartbeats occur between 0.4 and 4Hz. I suppose this has a relation why the first two DCT items are peaks...



      What do I do now?



      I have tried to apply a threshold to zero every term from the DCT below 150 and do an inverse DCT to reconstruct the signal and got this



      enter image description here



      I have reduced the threshold to 85 and got this



      enter image description here



      I am not sure if I see a heartbeat there. I mean, the peaks where the beats start.



      This is the data at regular time intervals I have (256 samples):



      17.0
      14.151599
      11.303198
      8.454798
      5.74406
      7.5946655
      12.173319
      18.0
      18.0
      7.448537
      18.0
      16.36569
      12.0000515
      13.0
      13.0
      13.0
      13.0
      12.442261
      9.134232
      11.052017
      12.0
      7.605861
      10.42025
      11.911684
      3.4419365
      2.0
      2.0
      14.082303
      16.227417
      9.639368
      7.0
      3.4693644
      5.0578203
      7.0
      14.859163
      8.363442
      7.876806
      16.721855
      16.367476
      13.054573
      17.416235
      6.6276655
      11.617707
      12.0
      6.3224463
      11.111255
      14.0
      14.0
      14.0
      14.0
      8.705125
      17.478954
      18.0
      17.259813
      14.371727
      12.0
      12.0
      17.304781
      18.0
      18.0
      2.6055841
      9.789778
      8.290463
      6.3248563
      2.3246787
      12.944895
      2.999961
      8.443108
      16.994041
      7.714527
      11.132567
      2.2226758
      5.6030903
      12.528458
      16.932209
      16.087227
      7.9563236
      16.43404
      8.239223
      17.576452
      12.102208
      15.194642
      1.0
      1.0
      1.0
      1.0
      1.0
      1.0
      1.7313459
      17.479614
      11.889918
      11.0
      11.0
      14.0
      14.0
      13.802156
      12.975004
      6.840872
      14.405505
      7.928815
      1.4836411
      7.193712
      15.371663
      6.2666273
      6.1682196
      17.532732
      16.0
      15.034918
      9.363262
      1.0
      4.654352
      17.0
      17.0
      17.0
      17.0
      10.1624565
      2.696946
      13.607519
      10.2923975
      1.0
      1.49984
      9.996923
      7.0500054
      17.0
      17.0
      17.343903
      13.191299
      1.6610342
      5.2127213
      7.0
      5.6532416
      3.0295517
      12.250117
      12.687657
      2.9297333
      7.463814
      9.5274105
      13.640531
      18.061134
      16.376305
      5.9621263
      4.2103305
      7.751727
      7.023478
      2.4116693
      14.6888685
      11.718729
      4.0103664
      12.0
      8.606849
      1.0
      1.0
      7.0
      7.0
      8.867684
      12.0
      12.0
      9.598275
      4.9731455
      2.0
      2.0
      2.0
      2.4965348
      4.843401
      5.4067893
      3.655766
      7.0
      11.899609
      11.855668
      10.36767
      16.59431
      7.843425
      1.9749169
      8.829407
      12.43066
      11.205647
      16.514818
      17.0
      13.328903
      11.462145
      12.0
      12.0
      12.0
      12.502206
      15.606055
      18.0
      18.0
      13.699917
      2.0
      2.0
      8.122738
      12.0342
      12.311193
      9.434023
      8.419968
      8.64551
      2.1631317
      7.9250226
      13.173435
      3.0252013
      1.0
      1.0
      1.0
      1.0
      1.0
      3.7013192
      6.0
      6.0
      6.3827076
      7.0
      6.570015
      6.0
      6.0
      6.0
      6.0
      2.8011405
      7.071625
      15.575444
      17.0
      17.0
      6.811758
      1.0
      4.5509486
      5.3095756
      10.288496
      13.577595
      2.493825
      10.179988
      12.0
      6.3059773
      7.9304085
      14.911688
      8.452748
      2.8948724
      10.117218
      12.0
      12.0
      15.008322
      16.0
      7.473282
      4.4403195
      12.0
      12.0
      8.330021
      6.0
      6.0
      6.0
      11.515245
      0.946867
      0.83356774
      0.95877224
      0.05619842
      15.221931
      16.469358
      5.231963
      1.7867849


      and these are the regular time intervals



      0.0
      0.03317536
      0.06635072
      0.09952608
      0.13270144
      0.1658768
      0.19905217
      0.23222753
      0.26540288
      0.29857823
      0.33175358
      0.36492893
      0.39810428
      0.43127963
      0.46445498
      0.49763033
      0.5308057
      0.56398106
      0.5971564
      0.63033175
      0.6635071
      0.69668245
      0.7298578
      0.76303315
      0.7962085
      0.82938385
      0.8625592
      0.89573455
      0.9289099
      0.96208525
      0.9952606
      1.028436
      1.0616113
      1.0947866
      1.127962
      1.1611373
      1.1943127
      1.227488
      1.2606634
      1.2938387
      1.3270141
      1.3601894
      1.3933648
      1.4265401
      1.4597155
      1.4928908
      1.5260662
      1.5592415
      1.5924169
      1.6255922
      1.6587676
      1.6919429
      1.7251183
      1.7582936
      1.791469
      1.8246443
      1.8578197
      1.890995
      1.9241704
      1.9573457
      1.9905211
      2.0236964
      2.056872
      2.0900474
      2.1232228
      2.1563983
      2.1895738
      2.2227492
      2.2559247
      2.2891002
      2.3222756
      2.355451
      2.3886266
      2.421802
      2.4549775
      2.488153
      2.5213284
      2.554504
      2.5876794
      2.6208549
      2.6540303
      2.6872058
      2.7203813
      2.7535567
      2.7867322
      2.8199077
      2.8530831
      2.8862586
      2.919434
      2.9526095
      2.985785
      3.0189605
      3.052136
      3.0853114
      3.118487
      3.1516623
      3.1848378
      3.2180133
      3.2511888
      3.2843642
      3.3175397
      3.3507152
      3.3838906
      3.417066
      3.4502416
      3.483417
      3.5165925
      3.549768
      3.5829434
      3.616119
      3.6492944
      3.6824698
      3.7156453
      3.7488208
      3.7819963
      3.8151717
      3.8483472
      3.8815227
      3.9146981
      3.9478736
      3.981049
      4.0142245
      4.0474
      4.0805755
      4.113751
      4.1469264
      4.180102
      4.2132773
      4.246453
      4.2796283
      4.3128037
      4.345979
      4.3791547
      4.41233
      4.4455056
      4.478681
      4.5118566
      4.545032
      4.5782075
      4.611383
      4.6445584
      4.677734
      4.7109094
      4.744085
      4.7772603
      4.810436
      4.8436112
      4.8767867
      4.909962
      4.9431376
      4.976313
      5.0094886
      5.042664
      5.0758395
      5.109015
      5.1421905
      5.175366
      5.2085414
      5.241717
      5.2748923
      5.308068
      5.3412433
      5.3744187
      5.407594
      5.4407697
      5.473945
      5.5071206
      5.540296
      5.5734715
      5.606647
      5.6398225
      5.672998
      5.7061734
      5.739349
      5.7725244
      5.8057
      5.8388753
      5.872051
      5.905226
      5.9384017
      5.971577
      6.0047526
      6.037928
      6.0711036
      6.104279
      6.1374545
      6.17063
      6.2038054
      6.236981
      6.2701564
      6.303332
      6.3365073
      6.369683
      6.4028583
      6.4360337
      6.469209
      6.5023847
      6.53556
      6.5687356
      6.601911
      6.6350865
      6.668262
      6.7014375
      6.734613
      6.7677884
      6.800964
      6.8341393
      6.867315
      6.9004903
      6.9336658
      6.966841
      7.0000167
      7.033192
      7.0663676
      7.099543
      7.1327186
      7.165894
      7.1990695
      7.232245
      7.2654204
      7.298596
      7.3317714
      7.364947
      7.3981223
      7.431298
      7.4644732
      7.4976487
      7.530824
      7.5639997
      7.597175
      7.6303506
      7.663526
      7.6967015
      7.729877
      7.7630525
      7.796228
      7.8294034
      7.862579
      7.8957543
      7.92893
      7.9621053
      7.9952807
      8.028456
      8.061631
      8.094807
      8.127982
      8.161158
      8.194333
      8.227509
      8.260684
      8.2938595
      8.327035
      8.36021
      8.393386
      8.426561
      8.459737






      data-mining dataset data-cleaning






      share|improve this question









      New contributor




      SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question









      New contributor




      SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question








      edited 14 hours ago







      SpaceDog













      New contributor




      SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 14 hours ago









      SpaceDogSpaceDog

      1112




      1112




      New contributor




      SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      SpaceDog is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          SpaceDog is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45387%2fhow-to-filter-this-signal-to-get-a-heartbeat-signal%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          SpaceDog is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          SpaceDog is a new contributor. Be nice, and check out our Code of Conduct.













          SpaceDog is a new contributor. Be nice, and check out our Code of Conduct.












          SpaceDog is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45387%2fhow-to-filter-this-signal-to-get-a-heartbeat-signal%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to label and detect the document text images

          Tabula Rosettana

          Aureus (color)