Comitatus Arvensis (regio historica)

Multi tool use

Situs comitatus in Regno Hungarico

Comitatus tabula anni 1891
Comitatus Arvensis [1] (Slovacice Oravská župa, Hungarice Árva vármegye et Germanice Komitat Arva ) erat unus sexaginta trium Regni Hungarici comitatus qui nunc ad Slovaciam pertinet. Urbs Dolný Kubín erat caput huius circuli, cui 78745 incolarum anno 1910 erant.
Nota |
↑ J. G. Th. Graesse, Orbis Latinus (Dresdae: Schönfeld, 1861; 1909. Brunsvici, 1972, 3 voll.) 1 2 3
Nexus interni
- Comitatus Hungarici
- Index comitatuum Regni Hungariae
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad historiam spectat. Amplifica, si potes!
|
Comitatus (vármegyék, Komitate) antiqui Regni Hungarici circa annum 1910

Abaúj-Torna (Abaujwar-Tornau) |
Alsó-Fehér (Unterweißenburg) |
Arad |
Arwa |
Bács-Bodrog (Batsch-Bodrog) |
Baranya (Branau) |
Bars (Barsch) |
Békés (Bekesch) |
Bereg (Berg) |
Beszterce-Naszód (Bistritz-Naszod) |
Bihar |
Borsod (Borschod) |
Brassó (Kronstadt) |
Csanád (Tschanad) |
Csík (Tschick) |
Csongrád (Tschongrad) |
Esztergom (Gran) |
Fejér (Weißenburg) |
Fogaras (Fogarasch) |
Gömör és Kishont (Gemer und Kleinhont) |
Győr (Raab) |
Hajdú (Haiduck) |
Háromszék |
Heves (Hewesch) |
Hont |
Hunyad |
Jász-Nagykun-Szolnok (Jaß-Großkumanien-Sollnock) |
Kis-Küküllő (Klein-Kokelburg) |
Kolozs (Klausenburg) |
Komárom (Komorn) |
Krassó-Szörény |
Liptó (Liptau) |
Máramaros (Maramuresch) |
Maros-Torda |
Moson (Wieselburg) |
Nagy-Küküllő (Groß-Kokelburg) |
Nógrád (Neograd/Neuburg) |
Nyitra (Neutra) |
Pest-Pilis-Solt-Kiskun (Pest-Pilisch-Scholt-Kleinkumanien) |
Posoniensis |
Sáros (Scharosch) |
Somogy (Schomodj) |
Soproniensis |
Szabolcs (Saboltsch) |
Szatmár (Sathmar) |
Szeben (Hermannstadt) |
Szepes (Zips) |
Szilágy |
Szolnok-Doboka |
Temes (Temesch) |
Tolna (Tolnau) |
Torda-Aranyos |
Torontál (Torontal) |
Trencsén (Trentschin) |
Turóc (Turz) |
Udvarhely |
Ugocsa (Ugotsch) |
Ung |
Vas (Eisenburg) |
Veszprém (Wesprim) |
Zala |
Zemplén (Semplin) |
Zólyom (Sohl)
corpus separatum
Fiume város és területe (Stadt Fiume mit Gebiet, Grad Rijeka i okolica)
Croatia-Slavonia
Belovár-Kőrös (Belovár-Kreutz, Bjelovar-Križevci) |
Lika-Krbava |
Modrus-Fiume (Modruš-Rijeka) |
Pozsega (Požega) |
Szerém (Syrmien, Srijem) |
Varasd (Warasdin, Varaždin) |
Verőce (Virovititz, Virovitica) |
Zágráb (Agram, Zagreb)
ty9iTpHXK036MNKq3TZinQ30n5l28wF40aTZeMq0sIPyTfEAfnFlr P9prdw3ehvT5
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...