Virides pictae Civitates quae putatur ad Asiam orientalem pertinere
Asia orientalis sive Oriens extremus est nomen partis Asiae quae comprehendit Sinam, Coream paeninsulam, Formosam insulam sive Taivaniam, Iaponiam, atque Vietnamiam sive terram Annamiticam.
Communi scriptura (i.e., scriptura Sinica) uti solebant incolae Asiae orientalis ab antiquitate usque ad saeculum XIX. Hae nationes omnes bacillis duobus inter edendum ita scienter utuntur, ut neque excidat quidquam, nec digitos extergere opus sit. oryzam colunt pro frumento maiore. Magna pars incolarum culto Buddhistico Mahāyānae (id est "Vehiculi Magni") adhaeret.
Index
1Geographia
1.1Maiores urbes
1.2Maiores fluvii
1.3Maiores montes
2Nexus externus
Geographia |
Maiores urbes |
Chungkina
Daegu
Focheum
Hirosima
Hongcongum
Kyotum
Macaum
Nagasacium
Nanchinum
Nancianga
Osaka
Pecinum
Pusanum
Quancheum
Siganum
Pyeongyangum
Quansua
Seulum
Sciamhaevum
Tianjin
Tokium
Taipeium
Ürümqi
Wuhan
Yokohama
Maiores fluvii |
Amur
Flumen Caeruleum
Flumen Flavum
Irtis
Mons Aso
Maiores montes |
Everestis
Fusius
Himalaia
Vexillum
Nomen Latinum
Nomen
Nomen
Incolae
Area (km²)
Densitas (inc./km²)
Caput Latine
Caput
Caput
Res publica popularis Sinarum
中华人民共和国
Zhōnghuá Rénmín Gònghéguó
1311110200
9596960 km²
137
Pecinum
北京市
Běijīng Shì
Respublica Coreana
대한민국
Daehan Minguk
49540367
100032 km²
493
Seulum
서울
Seoul
Respublica Popularis Democratica Coreana
조선민주주의인민공화국
Chosŏn Minjujuŭi Inmin Konghwaguk
22912177
120540 km²
Pyeongyangum
평양
Pyeongyang
Iaponia
日本
Nihon
128085000
377907 km²
337
Tokium
東京
Tokyo
Res publica Sinarum
中華民國
Zhōnghuá Mínguó
22604550
35980km²
624
Taipeium
臺北
Táibĕi
Nexus externus |
Vicimedia Communia plura habent quae ad Asiam orientalem spectant.
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...