Agrippa

Multi tool use
|
Haec est pagina discretiva nominalis quae paginas de hominibus eiusdem fere nominis indicat.
|
Agrippa fuit praenomen virile et cognomen Romanum, litteris Agr. notatum, quod Georgius Davis Chase dicit fortasse a verbis Graecis deductum, quae sunt ἀγρός 'ager' et ἵππος, 'equus'. Reicit autem etymologiam Plinii et Nonii, qui docent Agrippam appellatum esse ut "aegre partus", qualiter M. Agrippam ferunt genitum, qui in pedes processit nascens contra naturam.[1][2]
Qui hoc praenomen habuerint |
Menenius Agrippa, qui in Monte Sacro fabulam de membris humanis adversus ventrem discordantibus narravit (494 a.C.n.)
Marcus Vipsanius Agrippa (63–12 a.C.n.): dux exercitus, gener Augusti, maritus Iuliae, pater Agrippinae
- Omnes paginae quae verbo "Agrippa" incipiunt
- Omnes tituli qui verbum "Agrippa" comprehendunt
Nexus interni
Notae |
↑ George Davis Chase, "The Origin of Roman Praenomina", in Harvard Studies in Classical Philology, vol. VIII (1897), pp. 146–47.
↑
Haec pagina verba incorporat ex Aegidii Forcellini Lexico Totius Latinitatis, 1775. Versio interretialis
Onomasticon, s.v. "Agrippa".
Praenomina Romana: series paginarum brevium
|
|
Notae |
Agr. • Ap. • A. • K. • D. • F. • C. • Cn. • L. • Mam. • M'. • M. • N. • Oct. • Opet. • Post. • Pro. • P. • Q. • Sert. • Ser. • Sex. • S. • St. • Ti. • T. • V. • Vol. • Vop.
|
Praenomina |
Agrippa • Appius • Aulus • Caeso • Decimus • Faustus • Gaius • Gnaeus • Hostus • Lucius • Mamercus • Manius • Marcus • Mettius • Nonus • Numerius • Octavius • Opiter • Paullus • Postumus • Proculus • Publius • Quintus • Septimus • Sertor • Servius • Sextus • Spurius • Statius • Tiberius • Titus • Tullus • Vibius • Volesus • Vopiscus
|
|
|
F,l jfiSkge0MbIzSgn5 5S7vv07 KjcQ9mq1
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...