Virginia Raggi

Multi tool use

Virginia Raggi
Res apud Vicidata repertae:
Nativitas:
18 Iulii 1978;
RomaPatria:
ItaliaNomen nativum:
Virginia Elena Raggi
Officium
Officium: mayor of Rome
Munus: Politicus, Causidicus
Patronus: Foro Italico University of Rome, Cesare Previti
Consociatio
Factio: Motus V Stellarum
Familia
Coniunx: Andrea Severini
Virginia Helena Raggi (Romae die 18 Iulii 1978 nata), alumna tertiae universitatis urbis Romae, est iuris consulta italica et politica factionis Motus V stellarum
Anno 2011 ad factionem Motus V stellarum accessa Raggi cum marito suo grex subdivisionis administrativae Romae XIV (Municipio Roma XIV Monte Mario) condidit[1] et tum, anno 2013, illa electionem administrativam Italiae obtinens symbula electa est. et a die 20 Iunii 2016[2]praefecta urbi Romae.
Fa la lesbica non il sindaco,
C’e La lobby gay Vera non non spiega la censura ,
Raggi vergognati m
Raggirati di nuovo
Notae |
↑ http://www.movimento5stelle.it/virginiaraggisindaco/chi-sono.html
↑ http://elezioni.interno.it/comunali/scrutini/20160605/G120700900.htm
Bibliographia |
- Stephanie Kirchgaessner, "Five Star Movement dealt blow as aide to Rome mayor is arrested" in The Guardian (16 Decembris 2016)
- Gaia Pianigiani, "For Rome’s First Female Mayor, Change Is Uphill Battle" in New York Times (22 Martii 2017)
Nexus externi |

|
Vicimedia Communia plura habent quae ad Virginiam Raggi spectant.
|
Praefecti urbi Romae (1993–)
|
|
Franciscus Rutelli 1993 • Gualterius Veltroni 2001 • Ioannes Alemanno 2008 • Ignatius Marino 2013 • Virginia Raggi 2016 |
|
RcI,8EtONRd
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...