Humus

Multi tool use
Humus in scientia solorum est pars materiae organicae soli quae forma caret, sine "structura cellularis plantarum, microorganismorum, vel animalium propria."[1][2] Humus densitatem soli magnopere afficit, retentionemque umiditatis et nutrimentorum auget. Vocabulum humus in agricultura aliquando adhibetur ad compositum maturum, vel naturale, ex silva vel alio fonte automato extractum, pro usu ad solum emendandum describendum.[3] Adhibetur etiam ad stratum soli superioris describendum quod materiam organicam continet (nomine typus humi,[4] forma humi,[5] facies obliqua humi[6]).
Nexus interni
- Acidum humicum
- Biochar
- Biomassa
- Detritus
- Glomalinum
- Materia biotica
- Terra (humus)
- Terra preta
Notae |
↑ Anglice: "cellular structure characteristic of plants, micro-organisms or animals."
↑ D. C. Whitehead et J. Tinsley (1963), "The biochemistry of humus formation," Journal of the Science of Food and Agriculture 14(12):849–857. doi:10.1002/jsfa.2740141201. Abstractum.
↑ humus. Encyclopædia Britannica. Encyclopædia Britannica Online. Encyclopædia Britannica Inc., 2011. Web. 24 Nov 2011.
↑ O. G. Chertov, A. S. Kornarov, G. Crocker, P. Grace, J. Klir, M. Körschens, P. R. Poulton, et D. Richter, 1997, "Simulating trends of soil organic carbon in seven long-term experiments using the SOMM model of the humus types," Geoderma 81:121–135.doi:10.1016/S0016-7061(97)00085-2.
↑ R. Baritz, Humus Forms in Forests of the Northern German Lowlands (Stutgartiae: Schweizerbart, 2003).
↑ B. T. Bunting et J. Lundberg (1995), "The Humus Profile-Concept, Class and Reality," Geoderma 40:17–36, doi:10.1016/0016-7061(87)90011-5.
Bibliographia |
- Weber, Jerzy. Types of humus in soils. Wroclaw Poloniae: Agricultural University of Wroclaw.
1LM7AkEfZ,feO,2H6E8pS,dZhhe1AG6BP,6aT5N36
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...