Motus Munitionis Nationalis (Graeciae)

Multi tool use

Triumviri Munitionis Nationalis cum adiuvantibus anno 1916
Motus Munitionis Nationalis, Thessalonicae instituta, fuit rerum novarum motus in Graecia septentrionali anno 1916, et a die 16 Septembris 1916 usque ad 14 Iunii 1917 administratio alternativa civitatis Graeciae. Hoc tempore rex Constantinus I Graeciam voluit a primo bello mundano separare; alii autem, inter quos Eleutherius Benizelus, Graeciam cum Britannia, Francia, Italia iungere maluerunt.
Triumviri munitionis nationalis |
- Eleutherius Benizelus
- Paulus Cunturiotes
- Panagiotes Dancles
Administratio die 6 Octobris 1916 instituta |
Emmanuel Zymbracaces, minister exercitus, die 6 Decembris 1916 demissus
Meliotes Comnenus, minister exercitus a die 6 Decembris 1916
Nicolaus Polites, minister rerum externarum
Demetrius Dincas, minister rerum iuridicarum
Miltiades Negrepontes, minister rerum oeconomicarum
Themistocles Sophules, minister rerum internarum
Georgius Averoff, minister educationis
Thales Cutupes, minister oeconomiae nationalis
Alexander Cassabetes, minister transportationis
Leonidas Empiricus, minister commeatus
Spyridon Simus, minister profugarum
Andreas Michalacopulus, minister terrarum et habitationis
Legati administrationis Munitionis Nationalis |
Alexander Diomedes, legatus ad Franciam et Britanniam
Ronaldus Burrows, proxenus administrationis in Britannia
Apostolus Alexandres, legatus ad Italiam
Panagiotes Arabantinus et Georgius Caphantares, legati ad Civitates Foederatas Americae
EqRKe5GmLaB tcQA4n8 IA0vmhMlzI,eZlakbej30ubmyBWoMDQOa8wyjqjPTvhnS,oEqC31
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...