Ostium Murrayanum

Multi tool use
Coordinata: .mw-parser-output .geo-default,.mw-parser-output .geo-dms,.mw-parser-output .geo-dec{display:inline}.mw-parser-output .geo-nondefault,.mw-parser-output .geo-multi-punct{display:none}.mw-parser-output .longitude,.mw-parser-output .latitude{white-space:nowrap}
35°35′00″S 138°53′00″E / 35.583333°S 138.883333°E / -35.583333; 138.883333

Ostium Murrayanum ab Hindmarsh Insula visum.

Homines in Hindmarsh Insula ad Ostium Murrayanum, Novembri 2006.

Machina alveum Ostii Murrayani perfodit, hic ab Hindmarsh Insula visa,
Ostium Murrayanum[1] est locus ubi Flumen Murrayanum in Oceanum Australem defluit, circa decem chiliometra ad meridiorientem Goolwa et circa 75 chiliometra ad meridio-meridiorientem mediae Adelaidopolis versus, in Coorong et Goolwa Australi, civitatibus publicis.[2]Canalis aquae sinuoso cursu inter thinia arenosa labitur. Regio est dives piscium aviumque aquaticarum habitatio naturalis.[3]
Notae |
↑ Vide Santalum murrayanum, plantam Australianam familiae Santalaceae, et Metopum murrayensem, speciem Metopidarum in planitie inundationis Fluminis Murrayani repertam atque ex flumine appellatam.
↑ "Search result for "Murray Mouth (Estuary) " (Record no. SA0048047) with the following layers selected - "Suburbs and Localities" and " Place names (gazetteer)"". Property Location Browser. Government of South Australia .
↑ the River Meets the Ocean. Murray-Darling Basin Authority, 8 Iunii 2016.
Bibliographia |
- Boating Industry Association of South Australia et Department for Environment and Heritage of South Australia. 2005. South Australia's waters: an atlas & guide. Boating Industry Association of South Australia. ISBN 9781862546806.
- Department of Marine and Harbors of South Australia. 1985. The Waters of South Australia a series of charts, sailing notes and coastal photographs. Department of Marine and Harbors, South Australia. ISBN 9780724376032.
- Tolley, John C. 1968. South Coast Story. Mt. CompassL Rowett Print. ISBN 0958796432.
Nexus externi |
Encounter Marine Park Management plan summary. Department of Environment, Water and Natural Resources. 2012.
Where the River Meets the Ocean. Murray-Darling Basin Authority, 8 Iunii 2016.
OlMU6Bm,fGluGnB7,SR XS0IK vK 4,5qh2jZB6VhoS0zsSx39VilSey0
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...