Carolus Nesselrode

Multi tool use

Carolus Nesselrode
Res apud Vicidata repertae:
Nativitas:
13 Decembris 1780;
OlisipoObitus:
23 Martii 1862;
PetropolisPatria:
Imperium Russicum
Officium
Officium: Minister of Foreign Affairs
Munus: Legatus, military personnel, Politicus
Familia
Genitores: Wilhelm von Nesselrode;
Memoria
Laurae: Knight of the Order of the Holy Spirit, Knight in the order of Saint-Michel, Knight of the Order of St. Alexander Nevsky, Order of the White Eagle, Knight of the Order of the Golden Fleece, Order of the Black Eagle, Knight first class of the Order of Saint Anne, Order of St. Vladimir, 2nd class, Order of St. Vladimir, 1st class, Order of St. Andrew, Order of the Red Eagle 1st Class, Grand Cross of the Order of Charles III
Sepultura: Smolensky Lutheran Cemetery
Comes Carolus Basilii filius Nesselrode (Russice Карл Васильевич Нессельроде, tr. Karl Vasil'evič Nessel'rode) seu Carolus Robertus de Nesselrode (Theodisce Karl Robert von Nesselrode; 13 Decembris 1780 – 23 Martii 1862) erat rerum politicarum et artis diplomaticae peritus Russicus, annis 1816–1856 minister rerum extranearum, annis 1844–1856 etiam cancellarius Imperii Russici.
Lege etiam |
- Hennig Gritzbach: Der russische Reichskanzler Graf Nesselrode (1780–1862). Diss. Erlangen / Norimbergae 1974.
Nexus externus |
Opera ab hoc homine vel de eo scripta apud Bibliothecam Nationalem Germanicam .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Theodisce)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
DrhByRBvO Dud7Uqtvr,BlbBWP,1
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...