Keras Binary Classification val_acc won't go past ~67; Full data and code included












0












$begingroup$


I'm working on a binary classification in Keras with a Tensorflow backend. No matter how much I tweak, I can't seem to get my model past a val_acc of 67%. Is there something I'm missing, or is this just simply as accurate as I can get with my data?



Link to the data I am using



My Code



Load and Balance dataset to a 1:1, and create validation data.



from sklearn.utils import resample

raw_data = pd.read_csv('Data.csv')

df_majority = raw_data[raw_data['RESULT']==0].iloc[1:-2,0:3].dropna()
df_minority = raw_data[raw_data['RESULT']==1].iloc[1:-2,0:3].dropna()

print(raw_data['RESULT'].value_counts())


df_majority_downsampled = resample(df_majority,
replace=False,
n_samples=raw_data['RESULT'].value_counts()[1],
random_state=123)

# Combine minority class with downsampled majority class
df_downsampled = pd.concat([df_majority_downsampled,df_minority])

# Display new class counts
print(df_downsampled['RESULT'].value_counts())
print(numpy.unique(df_downsampled['RESULT']))

X = df_downsampled.iloc[1:-2,0:2].dropna()
Y = df_downsampled.iloc[1:-2,2:3].dropna()

X, XTest, Y, YTest = train_test_split(X, Y, test_size = 0.3, random_state = 0)

print(YTest['RESULT'].value_counts()) #Just a double check to make


Create Model



def create_model(activation):
model = Sequential()

model.add(Dense(128,activation=activation,input_dim=2))
model.add(BatchNormalization())

model.add(Dense(64,activation=activation))
model.add(BatchNormalization())
model.add(Dropout(0.2))

model.add(Dense(32,activation=activation))
model.add(BatchNormalization())
model.add(Dropout(0.2))

model.add(Dense(16,activation=activation))
model.add(BatchNormalization())
model.add(Dropout(0.2))

model.add(Dense(8,activation=activation))
model.add(BatchNormalization())
model.add(Dropout(0.2))

model.add(Dense(4,activation=activation))
model.add(BatchNormalization())
model.add(Dropout(0.2))

model.add(Dense(2,activation=activation))
model.add(BatchNormalization())
model.add(Dropout(0.2))

model.add(Dense(1,activation='sigmoid'))
# load weights
model.load_weights("weights.best.hdf5")
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001),metrics=['accuracy'])

return model
model = create_model('relu')

filepath ="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath,monitor='val_acc',verbose=1,save_best_only=True,mode='max')
callbacks_list = [checkpoint]

history = model.fit(X,Y,epochs=2000,batch_size=32, shuffle = True,validation_data = (XTest,YTest), verbose = 0,
callbacks=callbacks_list)


Predict and get score



from sklearn.metrics import roc_auc_score

predict = model.predict_classes(X)
print(numpy.unique(predict))

#for index,val in enumerate(predict):
#print("Predicted: %s, actual: %s, for val %s"(val[0],Y.iloc[index].values,X.iloc[index].values))

predict = [val[0] for val in predict]
print("ras score: ",roc_auc_score(Y,predict))


predict = model.predict(numpy.array([0.0235,0.5]).reshape(-1,2))
print(predict[0][0])


Result using current model
result









share









$endgroup$

















    0












    $begingroup$


    I'm working on a binary classification in Keras with a Tensorflow backend. No matter how much I tweak, I can't seem to get my model past a val_acc of 67%. Is there something I'm missing, or is this just simply as accurate as I can get with my data?



    Link to the data I am using



    My Code



    Load and Balance dataset to a 1:1, and create validation data.



    from sklearn.utils import resample

    raw_data = pd.read_csv('Data.csv')

    df_majority = raw_data[raw_data['RESULT']==0].iloc[1:-2,0:3].dropna()
    df_minority = raw_data[raw_data['RESULT']==1].iloc[1:-2,0:3].dropna()

    print(raw_data['RESULT'].value_counts())


    df_majority_downsampled = resample(df_majority,
    replace=False,
    n_samples=raw_data['RESULT'].value_counts()[1],
    random_state=123)

    # Combine minority class with downsampled majority class
    df_downsampled = pd.concat([df_majority_downsampled,df_minority])

    # Display new class counts
    print(df_downsampled['RESULT'].value_counts())
    print(numpy.unique(df_downsampled['RESULT']))

    X = df_downsampled.iloc[1:-2,0:2].dropna()
    Y = df_downsampled.iloc[1:-2,2:3].dropna()

    X, XTest, Y, YTest = train_test_split(X, Y, test_size = 0.3, random_state = 0)

    print(YTest['RESULT'].value_counts()) #Just a double check to make


    Create Model



    def create_model(activation):
    model = Sequential()

    model.add(Dense(128,activation=activation,input_dim=2))
    model.add(BatchNormalization())

    model.add(Dense(64,activation=activation))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(32,activation=activation))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(16,activation=activation))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(8,activation=activation))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(4,activation=activation))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(2,activation=activation))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(1,activation='sigmoid'))
    # load weights
    model.load_weights("weights.best.hdf5")
    model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001),metrics=['accuracy'])

    return model
    model = create_model('relu')

    filepath ="weights.best.hdf5"
    checkpoint = ModelCheckpoint(filepath,monitor='val_acc',verbose=1,save_best_only=True,mode='max')
    callbacks_list = [checkpoint]

    history = model.fit(X,Y,epochs=2000,batch_size=32, shuffle = True,validation_data = (XTest,YTest), verbose = 0,
    callbacks=callbacks_list)


    Predict and get score



    from sklearn.metrics import roc_auc_score

    predict = model.predict_classes(X)
    print(numpy.unique(predict))

    #for index,val in enumerate(predict):
    #print("Predicted: %s, actual: %s, for val %s"(val[0],Y.iloc[index].values,X.iloc[index].values))

    predict = [val[0] for val in predict]
    print("ras score: ",roc_auc_score(Y,predict))


    predict = model.predict(numpy.array([0.0235,0.5]).reshape(-1,2))
    print(predict[0][0])


    Result using current model
    result









    share









    $endgroup$















      0












      0








      0





      $begingroup$


      I'm working on a binary classification in Keras with a Tensorflow backend. No matter how much I tweak, I can't seem to get my model past a val_acc of 67%. Is there something I'm missing, or is this just simply as accurate as I can get with my data?



      Link to the data I am using



      My Code



      Load and Balance dataset to a 1:1, and create validation data.



      from sklearn.utils import resample

      raw_data = pd.read_csv('Data.csv')

      df_majority = raw_data[raw_data['RESULT']==0].iloc[1:-2,0:3].dropna()
      df_minority = raw_data[raw_data['RESULT']==1].iloc[1:-2,0:3].dropna()

      print(raw_data['RESULT'].value_counts())


      df_majority_downsampled = resample(df_majority,
      replace=False,
      n_samples=raw_data['RESULT'].value_counts()[1],
      random_state=123)

      # Combine minority class with downsampled majority class
      df_downsampled = pd.concat([df_majority_downsampled,df_minority])

      # Display new class counts
      print(df_downsampled['RESULT'].value_counts())
      print(numpy.unique(df_downsampled['RESULT']))

      X = df_downsampled.iloc[1:-2,0:2].dropna()
      Y = df_downsampled.iloc[1:-2,2:3].dropna()

      X, XTest, Y, YTest = train_test_split(X, Y, test_size = 0.3, random_state = 0)

      print(YTest['RESULT'].value_counts()) #Just a double check to make


      Create Model



      def create_model(activation):
      model = Sequential()

      model.add(Dense(128,activation=activation,input_dim=2))
      model.add(BatchNormalization())

      model.add(Dense(64,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(32,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(16,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(8,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(4,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(2,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(1,activation='sigmoid'))
      # load weights
      model.load_weights("weights.best.hdf5")
      model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001),metrics=['accuracy'])

      return model
      model = create_model('relu')

      filepath ="weights.best.hdf5"
      checkpoint = ModelCheckpoint(filepath,monitor='val_acc',verbose=1,save_best_only=True,mode='max')
      callbacks_list = [checkpoint]

      history = model.fit(X,Y,epochs=2000,batch_size=32, shuffle = True,validation_data = (XTest,YTest), verbose = 0,
      callbacks=callbacks_list)


      Predict and get score



      from sklearn.metrics import roc_auc_score

      predict = model.predict_classes(X)
      print(numpy.unique(predict))

      #for index,val in enumerate(predict):
      #print("Predicted: %s, actual: %s, for val %s"(val[0],Y.iloc[index].values,X.iloc[index].values))

      predict = [val[0] for val in predict]
      print("ras score: ",roc_auc_score(Y,predict))


      predict = model.predict(numpy.array([0.0235,0.5]).reshape(-1,2))
      print(predict[0][0])


      Result using current model
      result









      share









      $endgroup$




      I'm working on a binary classification in Keras with a Tensorflow backend. No matter how much I tweak, I can't seem to get my model past a val_acc of 67%. Is there something I'm missing, or is this just simply as accurate as I can get with my data?



      Link to the data I am using



      My Code



      Load and Balance dataset to a 1:1, and create validation data.



      from sklearn.utils import resample

      raw_data = pd.read_csv('Data.csv')

      df_majority = raw_data[raw_data['RESULT']==0].iloc[1:-2,0:3].dropna()
      df_minority = raw_data[raw_data['RESULT']==1].iloc[1:-2,0:3].dropna()

      print(raw_data['RESULT'].value_counts())


      df_majority_downsampled = resample(df_majority,
      replace=False,
      n_samples=raw_data['RESULT'].value_counts()[1],
      random_state=123)

      # Combine minority class with downsampled majority class
      df_downsampled = pd.concat([df_majority_downsampled,df_minority])

      # Display new class counts
      print(df_downsampled['RESULT'].value_counts())
      print(numpy.unique(df_downsampled['RESULT']))

      X = df_downsampled.iloc[1:-2,0:2].dropna()
      Y = df_downsampled.iloc[1:-2,2:3].dropna()

      X, XTest, Y, YTest = train_test_split(X, Y, test_size = 0.3, random_state = 0)

      print(YTest['RESULT'].value_counts()) #Just a double check to make


      Create Model



      def create_model(activation):
      model = Sequential()

      model.add(Dense(128,activation=activation,input_dim=2))
      model.add(BatchNormalization())

      model.add(Dense(64,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(32,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(16,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(8,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(4,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(2,activation=activation))
      model.add(BatchNormalization())
      model.add(Dropout(0.2))

      model.add(Dense(1,activation='sigmoid'))
      # load weights
      model.load_weights("weights.best.hdf5")
      model.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0001),metrics=['accuracy'])

      return model
      model = create_model('relu')

      filepath ="weights.best.hdf5"
      checkpoint = ModelCheckpoint(filepath,monitor='val_acc',verbose=1,save_best_only=True,mode='max')
      callbacks_list = [checkpoint]

      history = model.fit(X,Y,epochs=2000,batch_size=32, shuffle = True,validation_data = (XTest,YTest), verbose = 0,
      callbacks=callbacks_list)


      Predict and get score



      from sklearn.metrics import roc_auc_score

      predict = model.predict_classes(X)
      print(numpy.unique(predict))

      #for index,val in enumerate(predict):
      #print("Predicted: %s, actual: %s, for val %s"(val[0],Y.iloc[index].values,X.iloc[index].values))

      predict = [val[0] for val in predict]
      print("ras score: ",roc_auc_score(Y,predict))


      predict = model.predict(numpy.array([0.0235,0.5]).reshape(-1,2))
      print(predict[0][0])


      Result using current model
      result







      machine-learning deep-learning keras dataset data-cleaning





      share












      share










      share



      share










      asked 5 mins ago









      PavlovsCatPavlovsCat

      82




      82






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f50825%2fkeras-binary-classification-val-acc-wont-go-past-67-full-data-and-code-includ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f50825%2fkeras-binary-classification-val-acc-wont-go-past-67-full-data-and-code-includ%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to label and detect the document text images

          Vallis Paradisi

          Tabula Rosettana