Cosaci Zaporovienses

Multi tool use

Cosaci Zaporovienses epistulam ad sultanum Ottomanicum (responsum eo contumeliosum) scribentes ab Elia Repin picti
Cosaci Zaporovienses[1] sive Zaporogienses[2] seu Zaporohiani[3] vel Saporogi[4] (Ucrainice запорозькі козаки, tr. zaporoz'ki kozaky, seu запорізькі козаки, tr. zaporiz'ki kozaky) fuere Cosaci in terris Ucrainae hodiernae, qui saeculis quindecimo sedecimoque formationes militares certas et oppida munita nonnulla creaverunt in terra tunc nullius (ut Loca deserta nota) trans cataractas Danapris (unde et nomen suum obtinuerunt), gradatim enim in Exercitum Zaporoviensem cum Siecz[5] (seu Sietscha[6] vel Setscha[7]) sede principali uniti.
Duces illustres |
- Bogdanus Chmielnicius
- Ioannes Mazepa
Notae |
↑ "Cosaci Zaporovienses": [1],[2],[3],[4],[5].
↑ "Zaporogienses Cosaci": [6].
↑ "Cosaci Zaporohiani": [7].
↑ "(Cosacci) Saporogi": [8].
↑ "Siecz": [9],[10].
↑ "Sietscha": [11].
↑ "Setscha": [12],[13].
Nexus externi |

|
Vicimedia Communia plura habent quae ad Cosacos Zaporovienses spectant.
|
Pagina de Cosacis Zaporoviensibus Encyclopaediae Sovieticae Ucrainicae .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Ucrainice)
- Christiani Engel Leutschovia-Hungari Commentatio de republica militari seu Comparatio Lacedaemoniorum Cretensium et Cosaccorum (Gottingae, 1790)
dV31p,AY 9jZ10Ca0NXepcrn9beJo my,8FyZot
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...