How to plot plane of best fit in multivariate linear regression?












0












$begingroup$


I am implementing multivariate linear regression using numpy, pandas and matplotlib. I am reading data from a file which looks like this:



data.head()

ldr1 ldr2 servo
0 971 956 -2
1 691 825 -105
2 841 963 -26
3 970 731 44
4 755 939 -69


enter image description here



I proceed to implement gradient descent and computing the cost function. I include reading from file and plotting for completeness.



def read_data(file):
# read in data using pandas
data = pd.read_csv(file, sep=" ", header=None)
data.columns = ["ldr1", "ldr2", "servo"] # read the data
print(data.head())
# print(file_data)
return data


def plot_data(file_data):
ldr1 = my_data.iloc[:, 0:1]
ldr2 = my_data.iloc[:, 1:2]
servo_correction = my_data.iloc[:, 2:3]

fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(ldr2, ldr1, servo_correction)
ax.set_zlabel('Delta Servo')
plt.xlabel("LDR2")
plt.ylabel("LDR1")
plt.gca().invert_xaxis()
plt.show()
return ldr1, ldr2, servo_correction


# compute cost
def compute_cost(X, y, theta):
to_be_summed = np.power(((X @ theta.T)-y), 2)
return np.sum(to_be_summed)/(2 * len(X))


# gradient descent
def gradient_descent(X, y, theta, iters, alpha):
cost = np.zeros(iters)
for i in range(iters):
theta = theta - (alpha / len(X)) * np.sum(X * (X @ theta.T - y), axis=0)
cost[i] = compute_cost(X, y, theta)
return theta, cost


I call these functions like so:



my_data = read_data(filename)
ldr1, ldr2, servo = plot_data(my_data)

# we need to normalize the features using mean normalization
my_data = (my_data - my_data.mean())/my_data.std()
# print(my_data.head())

# setting the matrices
X = my_data.iloc[:, 0:2]
ones = np.ones([X.shape[0], 1])
X = np.concatenate((ones, X), axis=1)

y = my_data.iloc[:, 2:3].values # values converts it from pandas.core.frame.DataFrame to numpy.ndarray
theta = np.zeros([1, 3])

# set hyper parameters
alpha = 0.01
iterations = 1000

# running the gd and cost function
g, cost = gradient_descent(X, y, theta, iterations, alpha)
print("Thetas: ", g)

finalCost = compute_cost(X, y, g)
print("Final Cost: ", finalCost)


I am trying to fit the plane of best fit to this data. Currently my output is:



Thetas:  [[-3.86865143e-17  8.47885685e-01 -5.39083511e-01]]
Final Cost: 0.11972883176814067


enter image description here



This is what I came up with when trying to plot the plane of best fit. I can't seem to get this to work:



def plot_plane(theta, ldr1, ldr2, servo, X, Y):
z = theta.flat[0] * X + theta.flat[1] * X + theta.flat[2]

fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, z, rstride=1, cstride=1, alpha=0.2)
ax.scatter(ldr2, ldr1, servo)
ax.set_zlabel('Delta Servo')
plt.xlabel("LDR2")
plt.ylabel("LDR1")
plt.gca().invert_xaxis()
plt.show()

plot_plane(g, ldr1, ldr2, servo, X, y)


Any suggestions on how this can be done?










share|improve this question









$endgroup$

















    0












    $begingroup$


    I am implementing multivariate linear regression using numpy, pandas and matplotlib. I am reading data from a file which looks like this:



    data.head()

    ldr1 ldr2 servo
    0 971 956 -2
    1 691 825 -105
    2 841 963 -26
    3 970 731 44
    4 755 939 -69


    enter image description here



    I proceed to implement gradient descent and computing the cost function. I include reading from file and plotting for completeness.



    def read_data(file):
    # read in data using pandas
    data = pd.read_csv(file, sep=" ", header=None)
    data.columns = ["ldr1", "ldr2", "servo"] # read the data
    print(data.head())
    # print(file_data)
    return data


    def plot_data(file_data):
    ldr1 = my_data.iloc[:, 0:1]
    ldr2 = my_data.iloc[:, 1:2]
    servo_correction = my_data.iloc[:, 2:3]

    fig = plt.figure()
    ax = Axes3D(fig)
    ax.scatter(ldr2, ldr1, servo_correction)
    ax.set_zlabel('Delta Servo')
    plt.xlabel("LDR2")
    plt.ylabel("LDR1")
    plt.gca().invert_xaxis()
    plt.show()
    return ldr1, ldr2, servo_correction


    # compute cost
    def compute_cost(X, y, theta):
    to_be_summed = np.power(((X @ theta.T)-y), 2)
    return np.sum(to_be_summed)/(2 * len(X))


    # gradient descent
    def gradient_descent(X, y, theta, iters, alpha):
    cost = np.zeros(iters)
    for i in range(iters):
    theta = theta - (alpha / len(X)) * np.sum(X * (X @ theta.T - y), axis=0)
    cost[i] = compute_cost(X, y, theta)
    return theta, cost


    I call these functions like so:



    my_data = read_data(filename)
    ldr1, ldr2, servo = plot_data(my_data)

    # we need to normalize the features using mean normalization
    my_data = (my_data - my_data.mean())/my_data.std()
    # print(my_data.head())

    # setting the matrices
    X = my_data.iloc[:, 0:2]
    ones = np.ones([X.shape[0], 1])
    X = np.concatenate((ones, X), axis=1)

    y = my_data.iloc[:, 2:3].values # values converts it from pandas.core.frame.DataFrame to numpy.ndarray
    theta = np.zeros([1, 3])

    # set hyper parameters
    alpha = 0.01
    iterations = 1000

    # running the gd and cost function
    g, cost = gradient_descent(X, y, theta, iterations, alpha)
    print("Thetas: ", g)

    finalCost = compute_cost(X, y, g)
    print("Final Cost: ", finalCost)


    I am trying to fit the plane of best fit to this data. Currently my output is:



    Thetas:  [[-3.86865143e-17  8.47885685e-01 -5.39083511e-01]]
    Final Cost: 0.11972883176814067


    enter image description here



    This is what I came up with when trying to plot the plane of best fit. I can't seem to get this to work:



    def plot_plane(theta, ldr1, ldr2, servo, X, Y):
    z = theta.flat[0] * X + theta.flat[1] * X + theta.flat[2]

    fig = plt.figure()
    ax = Axes3D(fig)
    ax.plot_surface(X, Y, z, rstride=1, cstride=1, alpha=0.2)
    ax.scatter(ldr2, ldr1, servo)
    ax.set_zlabel('Delta Servo')
    plt.xlabel("LDR2")
    plt.ylabel("LDR1")
    plt.gca().invert_xaxis()
    plt.show()

    plot_plane(g, ldr1, ldr2, servo, X, y)


    Any suggestions on how this can be done?










    share|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I am implementing multivariate linear regression using numpy, pandas and matplotlib. I am reading data from a file which looks like this:



      data.head()

      ldr1 ldr2 servo
      0 971 956 -2
      1 691 825 -105
      2 841 963 -26
      3 970 731 44
      4 755 939 -69


      enter image description here



      I proceed to implement gradient descent and computing the cost function. I include reading from file and plotting for completeness.



      def read_data(file):
      # read in data using pandas
      data = pd.read_csv(file, sep=" ", header=None)
      data.columns = ["ldr1", "ldr2", "servo"] # read the data
      print(data.head())
      # print(file_data)
      return data


      def plot_data(file_data):
      ldr1 = my_data.iloc[:, 0:1]
      ldr2 = my_data.iloc[:, 1:2]
      servo_correction = my_data.iloc[:, 2:3]

      fig = plt.figure()
      ax = Axes3D(fig)
      ax.scatter(ldr2, ldr1, servo_correction)
      ax.set_zlabel('Delta Servo')
      plt.xlabel("LDR2")
      plt.ylabel("LDR1")
      plt.gca().invert_xaxis()
      plt.show()
      return ldr1, ldr2, servo_correction


      # compute cost
      def compute_cost(X, y, theta):
      to_be_summed = np.power(((X @ theta.T)-y), 2)
      return np.sum(to_be_summed)/(2 * len(X))


      # gradient descent
      def gradient_descent(X, y, theta, iters, alpha):
      cost = np.zeros(iters)
      for i in range(iters):
      theta = theta - (alpha / len(X)) * np.sum(X * (X @ theta.T - y), axis=0)
      cost[i] = compute_cost(X, y, theta)
      return theta, cost


      I call these functions like so:



      my_data = read_data(filename)
      ldr1, ldr2, servo = plot_data(my_data)

      # we need to normalize the features using mean normalization
      my_data = (my_data - my_data.mean())/my_data.std()
      # print(my_data.head())

      # setting the matrices
      X = my_data.iloc[:, 0:2]
      ones = np.ones([X.shape[0], 1])
      X = np.concatenate((ones, X), axis=1)

      y = my_data.iloc[:, 2:3].values # values converts it from pandas.core.frame.DataFrame to numpy.ndarray
      theta = np.zeros([1, 3])

      # set hyper parameters
      alpha = 0.01
      iterations = 1000

      # running the gd and cost function
      g, cost = gradient_descent(X, y, theta, iterations, alpha)
      print("Thetas: ", g)

      finalCost = compute_cost(X, y, g)
      print("Final Cost: ", finalCost)


      I am trying to fit the plane of best fit to this data. Currently my output is:



      Thetas:  [[-3.86865143e-17  8.47885685e-01 -5.39083511e-01]]
      Final Cost: 0.11972883176814067


      enter image description here



      This is what I came up with when trying to plot the plane of best fit. I can't seem to get this to work:



      def plot_plane(theta, ldr1, ldr2, servo, X, Y):
      z = theta.flat[0] * X + theta.flat[1] * X + theta.flat[2]

      fig = plt.figure()
      ax = Axes3D(fig)
      ax.plot_surface(X, Y, z, rstride=1, cstride=1, alpha=0.2)
      ax.scatter(ldr2, ldr1, servo)
      ax.set_zlabel('Delta Servo')
      plt.xlabel("LDR2")
      plt.ylabel("LDR1")
      plt.gca().invert_xaxis()
      plt.show()

      plot_plane(g, ldr1, ldr2, servo, X, y)


      Any suggestions on how this can be done?










      share|improve this question









      $endgroup$




      I am implementing multivariate linear regression using numpy, pandas and matplotlib. I am reading data from a file which looks like this:



      data.head()

      ldr1 ldr2 servo
      0 971 956 -2
      1 691 825 -105
      2 841 963 -26
      3 970 731 44
      4 755 939 -69


      enter image description here



      I proceed to implement gradient descent and computing the cost function. I include reading from file and plotting for completeness.



      def read_data(file):
      # read in data using pandas
      data = pd.read_csv(file, sep=" ", header=None)
      data.columns = ["ldr1", "ldr2", "servo"] # read the data
      print(data.head())
      # print(file_data)
      return data


      def plot_data(file_data):
      ldr1 = my_data.iloc[:, 0:1]
      ldr2 = my_data.iloc[:, 1:2]
      servo_correction = my_data.iloc[:, 2:3]

      fig = plt.figure()
      ax = Axes3D(fig)
      ax.scatter(ldr2, ldr1, servo_correction)
      ax.set_zlabel('Delta Servo')
      plt.xlabel("LDR2")
      plt.ylabel("LDR1")
      plt.gca().invert_xaxis()
      plt.show()
      return ldr1, ldr2, servo_correction


      # compute cost
      def compute_cost(X, y, theta):
      to_be_summed = np.power(((X @ theta.T)-y), 2)
      return np.sum(to_be_summed)/(2 * len(X))


      # gradient descent
      def gradient_descent(X, y, theta, iters, alpha):
      cost = np.zeros(iters)
      for i in range(iters):
      theta = theta - (alpha / len(X)) * np.sum(X * (X @ theta.T - y), axis=0)
      cost[i] = compute_cost(X, y, theta)
      return theta, cost


      I call these functions like so:



      my_data = read_data(filename)
      ldr1, ldr2, servo = plot_data(my_data)

      # we need to normalize the features using mean normalization
      my_data = (my_data - my_data.mean())/my_data.std()
      # print(my_data.head())

      # setting the matrices
      X = my_data.iloc[:, 0:2]
      ones = np.ones([X.shape[0], 1])
      X = np.concatenate((ones, X), axis=1)

      y = my_data.iloc[:, 2:3].values # values converts it from pandas.core.frame.DataFrame to numpy.ndarray
      theta = np.zeros([1, 3])

      # set hyper parameters
      alpha = 0.01
      iterations = 1000

      # running the gd and cost function
      g, cost = gradient_descent(X, y, theta, iterations, alpha)
      print("Thetas: ", g)

      finalCost = compute_cost(X, y, g)
      print("Final Cost: ", finalCost)


      I am trying to fit the plane of best fit to this data. Currently my output is:



      Thetas:  [[-3.86865143e-17  8.47885685e-01 -5.39083511e-01]]
      Final Cost: 0.11972883176814067


      enter image description here



      This is what I came up with when trying to plot the plane of best fit. I can't seem to get this to work:



      def plot_plane(theta, ldr1, ldr2, servo, X, Y):
      z = theta.flat[0] * X + theta.flat[1] * X + theta.flat[2]

      fig = plt.figure()
      ax = Axes3D(fig)
      ax.plot_surface(X, Y, z, rstride=1, cstride=1, alpha=0.2)
      ax.scatter(ldr2, ldr1, servo)
      ax.set_zlabel('Delta Servo')
      plt.xlabel("LDR2")
      plt.ylabel("LDR1")
      plt.gca().invert_xaxis()
      plt.show()

      plot_plane(g, ldr1, ldr2, servo, X, y)


      Any suggestions on how this can be done?







      machine-learning python regression plotting






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 16 mins ago









      Rrz0Rrz0

      1859




      1859






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49685%2fhow-to-plot-plane-of-best-fit-in-multivariate-linear-regression%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49685%2fhow-to-plot-plane-of-best-fit-in-multivariate-linear-regression%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Chemia organometallica

          LSTM sequence prediction: 3d input to 2d output

          Cannabis