Programmatura applicativa

Multi tool use

OpenOffice.org Writer programma editorium.
?OpenOffice.org est exemplum programmaturae applicativae fontis aperti.

GNU Image Manipulation Program (GIMP), versio 2.4.3. GIMP est programmatura libere distributa.
Programmatura applicativa,[1] vel programmatura adhibita[2] sive programmatura commoda,[3] etiam simpliciter applicatio et vulgo app, est programmatura computatralis ut usor opera diserta excogitata exsequatur. Inter exempla sunt programmatura incepti, programmatura rationis, sequitae officiorum, programmatura graphica, et lusores mediales. Multa programmata applicativa imprimis de documentis tractant. Haec appia cum computatro et eius programmatura systematica adligari, et ei separatim vulgari possunt; nonnulli autem usores, satis appium adligatorum habentes, nova appia inaugurant numquam.
Nexus interni
- Allmyapps
- Appsbar
- Appumentarium
- Appy Pie
- Eneas
- GifBoom
- Programmatura utilitatis
- Systema internum
- WordSmith Tools
Notae |
↑ Haec appellatio a Vicipaediano e lingua indigena in sermonem Latinum conversa est. Extra Vicipaediam huius locutionis testificatio vix inveniri potest.
↑ Haec appellatio a Vicipaediano e lingua indigena in sermonem Latinum conversa est. Extra Vicipaediam huius locutionis testificatio vix inveniri potest.
↑ Haec appellatio a Vicipaediano e lingua indigena in sermonem Latinum conversa est. Extra Vicipaediam huius locutionis testificatio vix inveniri potest.
Bibliographia |
- Campbell-Kelly, Martin, et William Aspray. 1996. Computer: A History of the Information Machine. Novi Eboraci: Basic Books. ISBN 0465029906.
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad informaticam spectat. Amplifica, si potes!
|
mybCX2kasGhhNNZ,5k7DIKn37TV6bfHoG0hPsjjaa8ya PtgqxFlPS WFefU0k 3hFBGGnRcmafgmI,QgWa5M,p
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...