Carolus Barth

Multi tool use

Carolus Barth
Res apud Vicidata repertae:
Nativitas:
10 Maii 1886;
BasiliaObitus:
10 Decembris 1968;
BasiliaPatria:
Helvetia
Officium
Munus: Theologus, professor, Pastor reformatus
Patronus: Universitas Fridericia Guilelmia Rhenana, Universitas Monasteriensis, Universitas Regia Georgia Augusta, Universitas Basiliensis, Universitas Dukiana
Consociatio
Factio: Socialis Democratica Factio Germaniae
Religio: Calvinismus
Memoria
Laurae: Iustus inter gentes, Sigmund Freud Prize, Sonning Prize, honorary doctorate of the University of Glasgow, Doctor honoris causa of the University of Strasbourg, honorary doctor of the University of St Andrews, Honorary doctor of the University of Geneva, Honorary doctor of the University of Oxford, honorary doctor of the University of Edinburgh, Fellow of the American Academy of Arts and Sciences, Q61775211
Sepultura: Friedhof am Hörnli
Carolus Barth (Basiliae die 10 Maii 1886; ibidem 10 Decembris 1968) fuit theologus reformatus et liberalis, socialista Christiana ac pastor Helveticus. Sub dictatura nazistarum ad Ecclesiam Confitentem pertinuit, et ergo anno 1935 e Germania, ubi professor apud universitatem Tubingae fuerat, in patriam redire debuit. Post secundum bellum mundanum, Israel eum inter iustos inter gentes rettulit.
Nexus interni
- Lex naturalis
- Ordines creationis
- Theologia dogmatica
- Theologia naturalis
Nexus externus |
- Archivum Caroli Barth
Opera Caroli Barth aut de Carolo Barth apud Bibliothecam Nationalem Germanicam .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Theodisce)
- Opera de Carolo Barth
- H.-H. Schneider: Carolus Barth: Biographia et theologia
Wolf Oschlies (Shoa.de): Caroli Barth oppositio contra Nazistas apud shoa.de
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
X6qBK RaC,qVYfz
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...