Datorum repositorium

Multi tool use

Databularium relationis IBM DB2 et systema suum datorum.
Datorum repositorium,[1] vel datorum ordinatrum,[2] vel fortasse puriore Latinitate receptaculum datorum, est conlectio datorum ordinata et comparata celeriter datum servandum repperiendumque. Interrete paene refertur, sed tamen dici potest databularium. Nomen aliquando ad receptaculum datorum relationale spectat, systema datorum ab Edgar Frank Codd (1923–2003) excogitatum, in quo index (licet data) cum SQL, lingua quaerendi, reperitur. Inter res huiusmodi sunt Oracle, Servus SQL Sybase, IBM DB2, Servus SQL Microsoft, Microsoft Access.
Nexus interni
- Eurodicautom
- Fauna Europaea
- Machina receptaculi datorum
- Servus receptaculi datorum
- Recuperatio datorum
- Receptaculum datorum ut communicatio inter rationes
- Protocollum interretiale
- Structurae
- Thesaurus datorum
- HIV Drug Resistance Database
- Internet Movie Database
- Vectorwise
Notae |
↑ Traupman, Ioannes. 2007. Latin and English Dictionary. Ed. 3a. p. 510. Philadelphiae: St. Joseph's University. ISBN 9780553590128. pagina 510.
↑ Vocabula computatralia, www.obta.uw.edu.pl.
Bibliographia |
- Beynon-Davies, P. 2004. Database Systems. Ed. 3a. Basingstoke: Palgrave, Houndmills.
- Connolly, Thomas, et Carolyn Begg. 2002. Database Systems. Novi Eboraci: Harlow.
- Date, C. J. 2003. An Introduction to Database Systems. Ed. 5a. Addison Wesley. ISBN 0-201-51381-1.
- Gray, J., et A. Reuter. 1992. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers.
- Kroenke, David M., et David J. Auer. 2007. Database Concepts. Ed. 3a. Novi Eboraci: Prentice.
- Lightstone, S., T. Teorey, et T. Nadeau. 2007. Physical Database Design: the database professional's guide to exploiting indexes, views, storage, and more. Morgan Kaufmann Press. ISBN 0-12-369389-6.
- Liu, Ling, et Tamer M. Özsu. eds.2009. Encyclopedia of Database Systems. ISBN 978-0-387-49616-0.
- Teorey, T., S. Lightstone, et T. Nadeau. 2005. Database Modeling & Design: Logical Design. Ed. 4a. Morgan Kaufmann Press. ISBN 0-12-685352-5.
PtGrm yBiX,yXK8sOTUigH,bA1gEOq,wD1VhhBq68toSj
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...