Petrus Martyr ab Angleria

Multi tool use

Petrus Martyr ab Angleria
Res apud Vicidata repertae:
Nativitas:
2 Februarii 1457;
ArunaObitus:
October 1526;
GranataPatria:
Hispania
Officium
Officium: ambassador of Spain to Egypt
Munus: Legatus, Rerum gestarum scriptor
Consociatio
Religio: Catholicismus
Petrus Martyr ab Angleria[1] (Arunae Pedemontii natus die 2 Februarii 1457; mortuus mense Octobri 1526 Granatae) fuit capellanus regum catholicorum Ferdinandi et Isabellae, consiliarius imperatoris Caroli V et auctor operis historici principalis, Latine compositi, de exploratione et conquisitione mediae Americae. Quod opus, a principio in forma epistularum et commentationum compositum, anno 1530 uno volumine, post auctoris mortem editum est sub titulo De orbe novo ... decades; textus enim in octo "decadas" dividitur. Decades V et VI patrono Aloisio Aragonio dicantur.
Granatae mortuus est, ubi in ecclesia cathedrali hoc epitaphio commemoratur:
- Rerum Ætate Nostra Gestarum / Et Novi Orbis Ignoti Hactenus / Illustratori Petro Martyri Mediolanensi / Cæsareo Senatori / Qui, Patria Relicta / Bella Granatensi Miles Interfuit / Mox Urbe Capta, Primum Canonico / Deinde Priori Hujus Ecclesiæ / Decanus Et Capitulum / Carissimo Collegae Posuere Sepulchrum / Anno MDXXVI.
Opera |
- 1511 : Legatio Babylonica, Oceani Decas, Poemata, Epigrammata
- 1511-1530 : De orbe novo ... decades
- 1530 : Opus epistolarium P. M. Anglerii Mediolanensis protonotarii apostolici atque a consiliis rerum Indicarum
Notae |
↑ "Petrus Martyr ab Angleria": nomen sic in titulo operis De orbe novo decades scriptum. Alibi "Petrus Martyr Anglerius"
Bibliographia |
Peter Martyr d'Anghiera in The Catholic Encyclopedia: an international work of reference (Novi Eboraci: Appleton, 1907–1914) .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice)
- Roberto Almagià, "Anghiera, Pietro Martire d'" in Dizionario biografico degli Italiani (Romae: Treccani, 1961)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
4ediVYhTb4Kc3TdYko nYKuc5,eMFf,6,oCbR9K2fEDunKP2Y,xCRhMVXjSltMKh,p,iLucwRTJ2a9iXHlyv3
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...