Dialecti Vasconicae

Multi tool use

Variationes Vasconicae linguae:
Dialectus occidentalis seu Biscaina Dialectus centralis seu Ipuscoana Dialectus Navarra Dialectus Lapurdiana Dialectus Sulentina Ubi Vasconicam linguam iam non loquuntur
Dialecti Vasconicae (Vasconice: Euskalkiak) sunt versiones regionales linguae Vasconicae. Sunt hodie 5 dialecti:
Dialectus Biscaina seu occidentalis (Bizkaiera)
Dialectus Ipuscoana seu centralis (Gipuzkera)
Dialectus Navarra seu orientalis (Nafarrera)
Dialectus Lapurdana (Lapurtera)
Dialectus Sulentina (Zuberera)
Est etiam versio normativa linguae Vasconicae, quae dicitur Euskara batua seu Lingua Vasconica Unita, quam Academia Vasconica regulat. Dialectus Roncalica et dialectus Alavensis iam sunt extinctae. Etiam nunc dialectum Navarrae Inferioris putatur eadem quam dialectum Lapurdanam esse.
Versiones dialectales verborum |
Vasconice
|
Biscaine[1]
|
Ipuscoane[1]
|
Navarre[2][3][4]
|
Roncalice
|
Lapurdane[5]
|
Navarre partis inferioris[5][2]
|
Suletine[6]
|
naiz (sum) haiz (es) da (est) gara (sumus) zara (es) zarete (estis) dira (sunt)
|
naz az da gara zara zaree dira
|
naiz aiz da gera zera zerate dira
|
naiz (y)aiz da ga(r)a za(r)a za(r)ate di(r)e
|
naz yaz da gra zra zrei dra
|
naiz haiz da gare zare zaizte di(r)e
|
n(a)iz h(a)iz da gira zira zirezte dira
|
niz hiz da gira zira zirae dira
|
dut (habeo) duk/dun (habes) du (habet) dugu (habemus) duzu (habes) duzue (habetis) dute (habent)
|
dot dok/don dau dogu dozu dozue dabe
|
det dek/den du degu dezu dezute dute
|
dut duk/dun du dugu duzu duzue dute
|
dur,dud duk/dun du digu tzu tzei dei
|
dut duk/dun du dugu duzu duzue dute
|
dut duk/dun du dugu duzu duzue (d)ute
|
düt dük/dün dü dügü düzü düzüe düe
|
Notae |
↑ 1.01.1 Aulestia, G. Basque English Dictionary University of Nevada Press, 1989
↑ 2.02.1 Pagola, RM Euskalkiz Euskalki Gobierno Vasco 1984
↑ Camino, I. (ed) Nafarroako Hizkerak Nafarroako Euskal Dialektologiako Jardunaldia 1997 (PDF)
↑ Gaminde, Iñaki Aditza Ipar Goi Nafarreraz Udako Euskal Unibertsitatea, Pamplona (1985)
↑ 5.05.1 Lafitte, P (ed.) Grammaire Basque Pour Tous II - Le Verbe Basque Haize Garbia, 1981
↑ Casenave-Harigile, J. Hiztegia II Eüskara - Français Hitzak 1993
VH VI XfggCJZhM,WuAT2m3QRjFA,qm58rYxgG5a mrDgUgDRyyTl3yjCsV13 G1avjBxy,qsudFf K3 poxeSvYS4dCp9hW4 SJ9Fz10r
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...