Darth Vader

Multi tool use

-2
Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.
Darth Vader est Tenebrarius Dominus Sith adversarius vel trifurcifer in variis fabulis seriei Bella Stellaria et discipulus Imperatori Darth Sidious. Natus est sine patre. Iuvens servus prout Anakin Skywalker iam puer mirabilis est sicut machinator. Manumissione a Quaegonus Jinn, fiat discipulus (Padawan) discipulo Quaegoni illius ipso Obivani Kenobi quem senem necat posterius. Potentissimus in Numinem et mechanicus prodigiosus, creditur praesertim a Quaegonum Jinn, propheciam illum optivum qui Numinis aequilibrium partem esse. Cliens est Darth Sidio. Generat geminos Principissam Leiam et Lucas Skywalker qui ipsum convertit partem Luminis Numinis ex partem Tenebrae sed mox ipse necatur a Darth Sidio Imperatore dum Lucas salvat gradatione pellicula.

Plena armatura Samurai. Lucas inspiratus est ab eiismodi vestimenta ut creavit illam pro Darth Vader.
Dicta |
- "Adeo, nos convenimus denuo, magister." - ad Obivanum Kenobi in Bella Stellaria, Episodium IV: Spes Nova
- "Minime... Ego pater tuum sum." - ad Lucam Skywalker
Nexus externi |

|
Vicimedia Communia plura habent quae ad Darth Vader spectant.
|

|
Vicimedia Communia plura habent quae ad Anakin Skywalker spectant (Anakin Skywalker, Darth Vader).
|
Pagina officialis apud Star Wars Databank
Darth Vader apud Wookieepedia
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad personam ficticiam spectat. Amplifica, si potes!
|
4GVbDuUqLCM40SjvxtXX6H3Abz5
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...