Music Generation LSTM not learning (Keras)












1












$begingroup$


I am trying to train a RNN in keras to produce music but I am having difficulty training it. The loss seems to remain fairly high and constant despite me changing the hidden size and number of layers and when it does sometimes train it often outputs the same note for every input, outputting a song of just one note repeated. Is this a problem with my data or how can I fix my model? The notes are extracted from the midi file and then one hot encoded.



def read_midi(path,trans='C'):
songs = glob(path)
notes =
offsets =
durations =
for file in songs:
print(file)
try:
midi = converter.parse(file)
except:
continue
parts = instrument.partitionByInstrument(midi)
if parts is not None:
notes_to_parse = parts.parts[0].recurse()
else:
notes_to_parse = midi.flat.notes
for element in notes_to_parse:
if isinstance(element,note.Note):
notes.append(str(element.pitch))
offsets.append(element.offset)
durations.append(element.quarterLength)
elif isinstance(element,chord.Chord):
notes.append('.'.join(str(n) for n in element.normalOrder))
offsets.append(element.offset)
durations.append(element.quarterLength)
return notes,offsets,durations


In this case I am just using the pitch just to see if I can get the RNN to train but I also planned to use the duration and change in offset as another feature by one-hot encoding combinations of the 3. The sequences are generated as follows



pitchnames = sorted(list(set(data)))
seq_length = 100
classes = len(pitchnames)
num_class = {i:ch for i,ch in enumerate(pitchnames)}
class_num = {ch:i for i,ch in enumerate(pitchnames)}
input_data = [class_num[x] for x in data]


input_temp =
output_temp=
for i in range(0,len(input_data)-seq_length,1):
input_temp.append(input_data[i:i+seq_length])
output_temp.append(input_data[i+seq_length])

sequences = len(output_temp)

x = np.reshape(input_temp,(sequences,seq_length,1))
x -= int(np.mean(x))
x = x/classes
y = keras.utils.to_categorical(output_temp)
assert classes == y[0].shape[0]

music_model = Sequential()
music_model.add(CuDNNLSTM(512,input_shape=(seq_length,1),return_sequences=True))
music_model.add(Dropout(0.5))
music_model.add(CuDNNLSTM(512))
music_model.add(Dense(256))
music_model.add(Activation('relu'))
music_model.add(Dropout(0.4))
music_model.add(Dense(classes))
music_model.add(Activation('softmax'))
music_model.compile(loss='categorical_crossentropy',optimizer='RMSprop')
filename = './ML/keras_rnn/music_weights.{epoch:02d}-{loss:.2f}.hdf5'
callbacks = [ModelCheckpoint(filename,monitor='loss',save_best_only=True)]
music_model.fit(x,y,callbacks = callbacks,epochs=1000,batch_size=64)


The loss seems to stop decreasing at around 5.03 and doesn't decrease further over the epochs. Any help would be greatly appreciated










share|improve this question









$endgroup$

















    1












    $begingroup$


    I am trying to train a RNN in keras to produce music but I am having difficulty training it. The loss seems to remain fairly high and constant despite me changing the hidden size and number of layers and when it does sometimes train it often outputs the same note for every input, outputting a song of just one note repeated. Is this a problem with my data or how can I fix my model? The notes are extracted from the midi file and then one hot encoded.



    def read_midi(path,trans='C'):
    songs = glob(path)
    notes =
    offsets =
    durations =
    for file in songs:
    print(file)
    try:
    midi = converter.parse(file)
    except:
    continue
    parts = instrument.partitionByInstrument(midi)
    if parts is not None:
    notes_to_parse = parts.parts[0].recurse()
    else:
    notes_to_parse = midi.flat.notes
    for element in notes_to_parse:
    if isinstance(element,note.Note):
    notes.append(str(element.pitch))
    offsets.append(element.offset)
    durations.append(element.quarterLength)
    elif isinstance(element,chord.Chord):
    notes.append('.'.join(str(n) for n in element.normalOrder))
    offsets.append(element.offset)
    durations.append(element.quarterLength)
    return notes,offsets,durations


    In this case I am just using the pitch just to see if I can get the RNN to train but I also planned to use the duration and change in offset as another feature by one-hot encoding combinations of the 3. The sequences are generated as follows



    pitchnames = sorted(list(set(data)))
    seq_length = 100
    classes = len(pitchnames)
    num_class = {i:ch for i,ch in enumerate(pitchnames)}
    class_num = {ch:i for i,ch in enumerate(pitchnames)}
    input_data = [class_num[x] for x in data]


    input_temp =
    output_temp=
    for i in range(0,len(input_data)-seq_length,1):
    input_temp.append(input_data[i:i+seq_length])
    output_temp.append(input_data[i+seq_length])

    sequences = len(output_temp)

    x = np.reshape(input_temp,(sequences,seq_length,1))
    x -= int(np.mean(x))
    x = x/classes
    y = keras.utils.to_categorical(output_temp)
    assert classes == y[0].shape[0]

    music_model = Sequential()
    music_model.add(CuDNNLSTM(512,input_shape=(seq_length,1),return_sequences=True))
    music_model.add(Dropout(0.5))
    music_model.add(CuDNNLSTM(512))
    music_model.add(Dense(256))
    music_model.add(Activation('relu'))
    music_model.add(Dropout(0.4))
    music_model.add(Dense(classes))
    music_model.add(Activation('softmax'))
    music_model.compile(loss='categorical_crossentropy',optimizer='RMSprop')
    filename = './ML/keras_rnn/music_weights.{epoch:02d}-{loss:.2f}.hdf5'
    callbacks = [ModelCheckpoint(filename,monitor='loss',save_best_only=True)]
    music_model.fit(x,y,callbacks = callbacks,epochs=1000,batch_size=64)


    The loss seems to stop decreasing at around 5.03 and doesn't decrease further over the epochs. Any help would be greatly appreciated










    share|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I am trying to train a RNN in keras to produce music but I am having difficulty training it. The loss seems to remain fairly high and constant despite me changing the hidden size and number of layers and when it does sometimes train it often outputs the same note for every input, outputting a song of just one note repeated. Is this a problem with my data or how can I fix my model? The notes are extracted from the midi file and then one hot encoded.



      def read_midi(path,trans='C'):
      songs = glob(path)
      notes =
      offsets =
      durations =
      for file in songs:
      print(file)
      try:
      midi = converter.parse(file)
      except:
      continue
      parts = instrument.partitionByInstrument(midi)
      if parts is not None:
      notes_to_parse = parts.parts[0].recurse()
      else:
      notes_to_parse = midi.flat.notes
      for element in notes_to_parse:
      if isinstance(element,note.Note):
      notes.append(str(element.pitch))
      offsets.append(element.offset)
      durations.append(element.quarterLength)
      elif isinstance(element,chord.Chord):
      notes.append('.'.join(str(n) for n in element.normalOrder))
      offsets.append(element.offset)
      durations.append(element.quarterLength)
      return notes,offsets,durations


      In this case I am just using the pitch just to see if I can get the RNN to train but I also planned to use the duration and change in offset as another feature by one-hot encoding combinations of the 3. The sequences are generated as follows



      pitchnames = sorted(list(set(data)))
      seq_length = 100
      classes = len(pitchnames)
      num_class = {i:ch for i,ch in enumerate(pitchnames)}
      class_num = {ch:i for i,ch in enumerate(pitchnames)}
      input_data = [class_num[x] for x in data]


      input_temp =
      output_temp=
      for i in range(0,len(input_data)-seq_length,1):
      input_temp.append(input_data[i:i+seq_length])
      output_temp.append(input_data[i+seq_length])

      sequences = len(output_temp)

      x = np.reshape(input_temp,(sequences,seq_length,1))
      x -= int(np.mean(x))
      x = x/classes
      y = keras.utils.to_categorical(output_temp)
      assert classes == y[0].shape[0]

      music_model = Sequential()
      music_model.add(CuDNNLSTM(512,input_shape=(seq_length,1),return_sequences=True))
      music_model.add(Dropout(0.5))
      music_model.add(CuDNNLSTM(512))
      music_model.add(Dense(256))
      music_model.add(Activation('relu'))
      music_model.add(Dropout(0.4))
      music_model.add(Dense(classes))
      music_model.add(Activation('softmax'))
      music_model.compile(loss='categorical_crossentropy',optimizer='RMSprop')
      filename = './ML/keras_rnn/music_weights.{epoch:02d}-{loss:.2f}.hdf5'
      callbacks = [ModelCheckpoint(filename,monitor='loss',save_best_only=True)]
      music_model.fit(x,y,callbacks = callbacks,epochs=1000,batch_size=64)


      The loss seems to stop decreasing at around 5.03 and doesn't decrease further over the epochs. Any help would be greatly appreciated










      share|improve this question









      $endgroup$




      I am trying to train a RNN in keras to produce music but I am having difficulty training it. The loss seems to remain fairly high and constant despite me changing the hidden size and number of layers and when it does sometimes train it often outputs the same note for every input, outputting a song of just one note repeated. Is this a problem with my data or how can I fix my model? The notes are extracted from the midi file and then one hot encoded.



      def read_midi(path,trans='C'):
      songs = glob(path)
      notes =
      offsets =
      durations =
      for file in songs:
      print(file)
      try:
      midi = converter.parse(file)
      except:
      continue
      parts = instrument.partitionByInstrument(midi)
      if parts is not None:
      notes_to_parse = parts.parts[0].recurse()
      else:
      notes_to_parse = midi.flat.notes
      for element in notes_to_parse:
      if isinstance(element,note.Note):
      notes.append(str(element.pitch))
      offsets.append(element.offset)
      durations.append(element.quarterLength)
      elif isinstance(element,chord.Chord):
      notes.append('.'.join(str(n) for n in element.normalOrder))
      offsets.append(element.offset)
      durations.append(element.quarterLength)
      return notes,offsets,durations


      In this case I am just using the pitch just to see if I can get the RNN to train but I also planned to use the duration and change in offset as another feature by one-hot encoding combinations of the 3. The sequences are generated as follows



      pitchnames = sorted(list(set(data)))
      seq_length = 100
      classes = len(pitchnames)
      num_class = {i:ch for i,ch in enumerate(pitchnames)}
      class_num = {ch:i for i,ch in enumerate(pitchnames)}
      input_data = [class_num[x] for x in data]


      input_temp =
      output_temp=
      for i in range(0,len(input_data)-seq_length,1):
      input_temp.append(input_data[i:i+seq_length])
      output_temp.append(input_data[i+seq_length])

      sequences = len(output_temp)

      x = np.reshape(input_temp,(sequences,seq_length,1))
      x -= int(np.mean(x))
      x = x/classes
      y = keras.utils.to_categorical(output_temp)
      assert classes == y[0].shape[0]

      music_model = Sequential()
      music_model.add(CuDNNLSTM(512,input_shape=(seq_length,1),return_sequences=True))
      music_model.add(Dropout(0.5))
      music_model.add(CuDNNLSTM(512))
      music_model.add(Dense(256))
      music_model.add(Activation('relu'))
      music_model.add(Dropout(0.4))
      music_model.add(Dense(classes))
      music_model.add(Activation('softmax'))
      music_model.compile(loss='categorical_crossentropy',optimizer='RMSprop')
      filename = './ML/keras_rnn/music_weights.{epoch:02d}-{loss:.2f}.hdf5'
      callbacks = [ModelCheckpoint(filename,monitor='loss',save_best_only=True)]
      music_model.fit(x,y,callbacks = callbacks,epochs=1000,batch_size=64)


      The loss seems to stop decreasing at around 5.03 and doesn't decrease further over the epochs. Any help would be greatly appreciated







      python keras rnn






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked yesterday









      treutmtreutm

      225




      225






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46422%2fmusic-generation-lstm-not-learning-keras%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46422%2fmusic-generation-lstm-not-learning-keras%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to label and detect the document text images

          Tabula Rosettana

          Aureus (color)