how to train a muliti-input and multi-output trainsets
$begingroup$
now,I have a 3600*119 matrix.3600 means samples,119 means variable numbers.
I hope I can input a [1,1:119] variable, and get the next,[2,1:199],just like it.
the dataset parts:
machine-learning
New contributor
$endgroup$
add a comment |
$begingroup$
now,I have a 3600*119 matrix.3600 means samples,119 means variable numbers.
I hope I can input a [1,1:119] variable, and get the next,[2,1:199],just like it.
the dataset parts:
machine-learning
New contributor
$endgroup$
add a comment |
$begingroup$
now,I have a 3600*119 matrix.3600 means samples,119 means variable numbers.
I hope I can input a [1,1:119] variable, and get the next,[2,1:199],just like it.
the dataset parts:
machine-learning
New contributor
$endgroup$
now,I have a 3600*119 matrix.3600 means samples,119 means variable numbers.
I hope I can input a [1,1:119] variable, and get the next,[2,1:199],just like it.
the dataset parts:
machine-learning
machine-learning
New contributor
New contributor
New contributor
asked 13 hours ago
hellozqhellozq
11
11
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This is totally possible with deep neural networks. You can have an input vector and an output vector. However, your specific case does not have sufficient data to train such a model. With 119 inputs and 119 outputs you will need quite a complex network architecture to capture these mappings. In general I like to have at a very minimum 100 times more instances than features when training a neural network.
Here is an example of a neural network which can sort numbers, it has 4 input neurons and 4 output neurons.
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv1D, MaxPooling1D, Reshape
from keras.callbacks import ModelCheckpoint
from keras.models import model_from_json
from keras import backend as K
First we will create some data
import numpy as np
n = 100000
x_train = np.zeros((n,4))
for i in range(n):
x_train[i,:] = np.random.permutation(50)[0:4]
x_train = x_train.reshape(n, 4,)
y_train = np.sort(x_train, axis=1).reshape(n, 4,)
n = 10000
x_test = np.zeros((n,4))
for i in range(n):
x_test[i,:] = np.random.permutation(50)[0:4]
x_test = x_test.reshape(n, 4,)
y_test = np.sort(x_test, axis=1).reshape(n, 4,)
print(x_test[0].T)
print(y_test[0])
[25. 33. 4. 2.]
[ 2. 4. 25. 33.]
Let's make our neural network model
input_shape = (4,)
model = Sequential()
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(4))
model.compile(loss=keras.losses.mean_squared_error,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
Now we train it
epochs = 20
batch_size = 512
# Fit the model weights.
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
You can see the progression of the training using
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(20,5))
# summarize history for accuracy
plt.subplot(1,2,1)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='lower right')
# summarize history for loss
plt.subplot(1,2,2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.show()
Now we have our model, we can sort new inputs
np.round(model.predict(np.array([[1,5,2,3]])))
array([[1., 2., 3., 5.]], dtype=float32)
np.round(model.predict(np.array([[20,7,24,3]])))
array([[ 3., 7., 20., 23.]], dtype=float32)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
hellozq is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46581%2fhow-to-train-a-muliti-input-and-multi-output-trainsets%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is totally possible with deep neural networks. You can have an input vector and an output vector. However, your specific case does not have sufficient data to train such a model. With 119 inputs and 119 outputs you will need quite a complex network architecture to capture these mappings. In general I like to have at a very minimum 100 times more instances than features when training a neural network.
Here is an example of a neural network which can sort numbers, it has 4 input neurons and 4 output neurons.
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv1D, MaxPooling1D, Reshape
from keras.callbacks import ModelCheckpoint
from keras.models import model_from_json
from keras import backend as K
First we will create some data
import numpy as np
n = 100000
x_train = np.zeros((n,4))
for i in range(n):
x_train[i,:] = np.random.permutation(50)[0:4]
x_train = x_train.reshape(n, 4,)
y_train = np.sort(x_train, axis=1).reshape(n, 4,)
n = 10000
x_test = np.zeros((n,4))
for i in range(n):
x_test[i,:] = np.random.permutation(50)[0:4]
x_test = x_test.reshape(n, 4,)
y_test = np.sort(x_test, axis=1).reshape(n, 4,)
print(x_test[0].T)
print(y_test[0])
[25. 33. 4. 2.]
[ 2. 4. 25. 33.]
Let's make our neural network model
input_shape = (4,)
model = Sequential()
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(4))
model.compile(loss=keras.losses.mean_squared_error,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
Now we train it
epochs = 20
batch_size = 512
# Fit the model weights.
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
You can see the progression of the training using
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(20,5))
# summarize history for accuracy
plt.subplot(1,2,1)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='lower right')
# summarize history for loss
plt.subplot(1,2,2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.show()
Now we have our model, we can sort new inputs
np.round(model.predict(np.array([[1,5,2,3]])))
array([[1., 2., 3., 5.]], dtype=float32)
np.round(model.predict(np.array([[20,7,24,3]])))
array([[ 3., 7., 20., 23.]], dtype=float32)
$endgroup$
add a comment |
$begingroup$
This is totally possible with deep neural networks. You can have an input vector and an output vector. However, your specific case does not have sufficient data to train such a model. With 119 inputs and 119 outputs you will need quite a complex network architecture to capture these mappings. In general I like to have at a very minimum 100 times more instances than features when training a neural network.
Here is an example of a neural network which can sort numbers, it has 4 input neurons and 4 output neurons.
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv1D, MaxPooling1D, Reshape
from keras.callbacks import ModelCheckpoint
from keras.models import model_from_json
from keras import backend as K
First we will create some data
import numpy as np
n = 100000
x_train = np.zeros((n,4))
for i in range(n):
x_train[i,:] = np.random.permutation(50)[0:4]
x_train = x_train.reshape(n, 4,)
y_train = np.sort(x_train, axis=1).reshape(n, 4,)
n = 10000
x_test = np.zeros((n,4))
for i in range(n):
x_test[i,:] = np.random.permutation(50)[0:4]
x_test = x_test.reshape(n, 4,)
y_test = np.sort(x_test, axis=1).reshape(n, 4,)
print(x_test[0].T)
print(y_test[0])
[25. 33. 4. 2.]
[ 2. 4. 25. 33.]
Let's make our neural network model
input_shape = (4,)
model = Sequential()
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(4))
model.compile(loss=keras.losses.mean_squared_error,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
Now we train it
epochs = 20
batch_size = 512
# Fit the model weights.
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
You can see the progression of the training using
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(20,5))
# summarize history for accuracy
plt.subplot(1,2,1)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='lower right')
# summarize history for loss
plt.subplot(1,2,2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.show()
Now we have our model, we can sort new inputs
np.round(model.predict(np.array([[1,5,2,3]])))
array([[1., 2., 3., 5.]], dtype=float32)
np.round(model.predict(np.array([[20,7,24,3]])))
array([[ 3., 7., 20., 23.]], dtype=float32)
$endgroup$
add a comment |
$begingroup$
This is totally possible with deep neural networks. You can have an input vector and an output vector. However, your specific case does not have sufficient data to train such a model. With 119 inputs and 119 outputs you will need quite a complex network architecture to capture these mappings. In general I like to have at a very minimum 100 times more instances than features when training a neural network.
Here is an example of a neural network which can sort numbers, it has 4 input neurons and 4 output neurons.
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv1D, MaxPooling1D, Reshape
from keras.callbacks import ModelCheckpoint
from keras.models import model_from_json
from keras import backend as K
First we will create some data
import numpy as np
n = 100000
x_train = np.zeros((n,4))
for i in range(n):
x_train[i,:] = np.random.permutation(50)[0:4]
x_train = x_train.reshape(n, 4,)
y_train = np.sort(x_train, axis=1).reshape(n, 4,)
n = 10000
x_test = np.zeros((n,4))
for i in range(n):
x_test[i,:] = np.random.permutation(50)[0:4]
x_test = x_test.reshape(n, 4,)
y_test = np.sort(x_test, axis=1).reshape(n, 4,)
print(x_test[0].T)
print(y_test[0])
[25. 33. 4. 2.]
[ 2. 4. 25. 33.]
Let's make our neural network model
input_shape = (4,)
model = Sequential()
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(4))
model.compile(loss=keras.losses.mean_squared_error,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
Now we train it
epochs = 20
batch_size = 512
# Fit the model weights.
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
You can see the progression of the training using
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(20,5))
# summarize history for accuracy
plt.subplot(1,2,1)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='lower right')
# summarize history for loss
plt.subplot(1,2,2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.show()
Now we have our model, we can sort new inputs
np.round(model.predict(np.array([[1,5,2,3]])))
array([[1., 2., 3., 5.]], dtype=float32)
np.round(model.predict(np.array([[20,7,24,3]])))
array([[ 3., 7., 20., 23.]], dtype=float32)
$endgroup$
This is totally possible with deep neural networks. You can have an input vector and an output vector. However, your specific case does not have sufficient data to train such a model. With 119 inputs and 119 outputs you will need quite a complex network architecture to capture these mappings. In general I like to have at a very minimum 100 times more instances than features when training a neural network.
Here is an example of a neural network which can sort numbers, it has 4 input neurons and 4 output neurons.
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv1D, MaxPooling1D, Reshape
from keras.callbacks import ModelCheckpoint
from keras.models import model_from_json
from keras import backend as K
First we will create some data
import numpy as np
n = 100000
x_train = np.zeros((n,4))
for i in range(n):
x_train[i,:] = np.random.permutation(50)[0:4]
x_train = x_train.reshape(n, 4,)
y_train = np.sort(x_train, axis=1).reshape(n, 4,)
n = 10000
x_test = np.zeros((n,4))
for i in range(n):
x_test[i,:] = np.random.permutation(50)[0:4]
x_test = x_test.reshape(n, 4,)
y_test = np.sort(x_test, axis=1).reshape(n, 4,)
print(x_test[0].T)
print(y_test[0])
[25. 33. 4. 2.]
[ 2. 4. 25. 33.]
Let's make our neural network model
input_shape = (4,)
model = Sequential()
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(32, activation='relu',
input_shape=input_shape))
model.add(Dense(4))
model.compile(loss=keras.losses.mean_squared_error,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
Now we train it
epochs = 20
batch_size = 512
# Fit the model weights.
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
You can see the progression of the training using
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure(figsize=(20,5))
# summarize history for accuracy
plt.subplot(1,2,1)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='lower right')
# summarize history for loss
plt.subplot(1,2,2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper right')
plt.show()
Now we have our model, we can sort new inputs
np.round(model.predict(np.array([[1,5,2,3]])))
array([[1., 2., 3., 5.]], dtype=float32)
np.round(model.predict(np.array([[20,7,24,3]])))
array([[ 3., 7., 20., 23.]], dtype=float32)
answered 12 hours ago
JahKnowsJahKnows
4,897625
4,897625
add a comment |
add a comment |
hellozq is a new contributor. Be nice, and check out our Code of Conduct.
hellozq is a new contributor. Be nice, and check out our Code of Conduct.
hellozq is a new contributor. Be nice, and check out our Code of Conduct.
hellozq is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f46581%2fhow-to-train-a-muliti-input-and-multi-output-trainsets%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown