Normannia Inferior

Multi tool use

Normannia Inferior
Res apud Vicidata repertae:
former French regionCivitas:
FranciaLocus:
49°N, 1°WSitus interretialis
Fines
Subdivisio superior: Francia
Territoria finitima: Normannia Superior, Centrum, Pagi Ligeris, Brittany
Forma
Area: 17 589 chiliometrum quadratum
Caput: Cadomum
Subdivisiones: Calva Dorsa, Manica, Olina
Vita
Incolae: 1 478 712
Zona horaria: UTC+1, UTC+2
Normannia Inferior erat usque ad annum 2015 regio administrativa sive provincia Franciae. A die 1 Ianuarii 2016 cum Normannia Superiore ad novam regionem administrativam Normanniam coniuncta est. Caput provinciae pristinae erat urbs Cadomum.
Normannia Inferior habebat praefecturas tres:
- Calva Dorsa
- Manicam
- Olinam
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad geographiam spectat. Amplifica, si potes!
|
Provinciae Franciae hodiernae
|
|
Provinciae (régions) Franciae hexagonalis ante annum 2016 |
Alsatia · Aquitania · Arvernia · Britannia Minor · Burgundia · Campania et Arduenna · Centrum · Insula Franciae · Lemovicensis · Liber Comitatus · Lotharingia · Meridianum et Pyrenaei · Normannia Inferior · Normannia Superior · Occitania et Ruscino · Pagi Ligeris · Picardia · Pictaviensis et Carantoni · Provincia Alpes Litus Lazuli · Rhodanus et Alpes · Septentrio et Fretum
|
Provinciae (régions) Franciae hexagonalis ab anno 2016 |
Alta Franciae · Aquitania Nova · Arvernia Rhodanus Alpes · Britannia Minor · Burgundia et Liber Comitatus · Centrum et Vallis Ligeris · Insula Franciae · Normannia · Occitania · Oriens Magnus · Provincia Alpes Litus Lazuli
|
Provinciae transmarinae |
Corsica · Guadalupia · Guiana · Martinica · Mayotte · Reunio
|
|
|
1a7k95B 6,JMzhzen19bpUzdSrsz mMQSX6qS7p8hzbqPJDpvO,tnyCv q b,kddzU6J dET5zpKf11Omy3E7tUgXpEgp
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...