Ioannes Matham

Multi tool use

Ioannes Matham
Res apud Vicidata repertae:
Nativitas:
Ianuarius 1600;
HarlemumObitus:
Iulius 1648;
HagaPatria:
Nederlandia
Officium
Munus: pictor, printmaker
Familia
Genitores: Jacobus Matham;

Natura mortua cum persicis (1615-1648)
Ioannes Matham (vulgo: Jan vel Johannes Matham; Harlemi Ianuarii anno 1600 natus; ibidem 25 Iulii anno 1648 mortuus) saeculi aurei pictor et chalcographus Nederlandicus fuit.
Biographia |
Huis artificis vita parum nota est: a Bryan profertur ut "Ioannes Matham, Iacobi filius maior natu pictorque effigies pingens a Zani nominatus" et "ab auctoribus aliis nuntium nullum refertur"[1].
Iacobi Matham filius et scalptorum Hadriani et Theodori frater, fortasse patris discipulus fuit[2]. In Harlemo de 1628 usque ad 1648 laboravit: enim profertur ut loci Sancti Lucae Societatis comes anno 1628 et anno 1637[2].
Praecipue florum et pomorum naturas mortuas maxime creavit[2].
Opera |
Natura mortua cum persicis, pictura obsignata JMatham F, 1615-1648
Vanitas, pictura supra tela cum pigmento oleario, 32 x 49 cm[3]
Notae |
↑ Dictionary of Painters and Engravers, Biographical and Critical
↑ 2.02.12.2 Rijksbureau voor Kunsthistorische Documentatie
↑ Vanitas - Artnet
Bibliographia |
- "Jan Matham" .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Nederlandice). Rijksbureau voor Kunsthistorische Documentatie. 2014
- Michael Bryan; George Stanley (1849). H.G.Bohn. ed
(Anglice). Dictionary of painters and engravers, biographical and critical. Londinio. p. 447
Nexus externi |

|
Vicimedia Communia plura habent quae ad Ioannem Matham spectant.
|
Ioannes Matham in Artnet
(Anglice)
ng31efyubzgEQsy9Ta 529XKfuf3DP mBAE,P,SdOj7lL
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...