Beryllium

Multi tool use
4
|
lithium ← beryllium → borium
|
nullum ↑ Be ↓ Mg
|
|
|
Proprietates generales
|
Nomen, Symbolus, Numerus Atomicus
|
beryllium, Be, 4
|
Grex, Periodus, Glaeba
|
2, 2, s
|
Color |
|
Pondus atomicum |
9.012182(3) g·mol−1
|
Configuratio electronis |
1s2 2s2
|
e- per sphaeram |
2, 2
|
Proprietates physicae
|
Status |
solidus
|
Densitas (circa 20°C) |
1.85 g·cm−3
|
Densitas liquidi p.l.
|
1.690 g·cm−3
|
Punctum liquefactionis |
1560 K (1287 °C, 2349 °F)
|
Punctum fervoris |
2742 K (2469 °C, 4476 °F)
|
Calor latens fusionis |
7.895 kJ·mol−1
|
Capacitas caloris |
(25 °C) 16.443 J·mol−1·K−1
|
Pressio vaporis
P(Pa) |
1 |
10 |
100 |
1 k |
10 k |
100 k
|
at T(K) |
1462 |
1608 |
1791 |
2023 |
2327 |
2742
|
|
Proprietates atomicae
|
Structura crystallina |
cubic face centered
|
Affectus oxidationis |
2 (amphotericus)
|
Electronegativity |
1.57 (Pauling)?
|
Radius atomicus |
105 pm
|
Radius Atomicus (calc.) |
112 pm
|
Radius covalentiae |
90 pm
|
Beryllium[1] est systematis periodici elementum cui est symbolum chemicum Be et numerus atomicus 4. Beryllium minerali beryllo produetur et est bivalens elementum toxicum, colore ravo et chalybeio, firmum, leve sed fragile, metallum alcalicum terrenum quod praecipue ad metalla mixta duranda adhibetur.
Inter lithium et borium in systemate periodico stat.
Primum anno 1828 chemicus Germanicus Fridericus Wöhler beryllium a ceteris substantiis secrevit.
Notae |
↑ "Beryllium": Peter van der Krogt, "Elementa chemica" apud situm Elementymology & Elements Multidict
Nexus externi |
Hoc elementum apud Patreon: periodic videos
Elementa chemica: series paginarum brevium
|
|
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 55 Cs 56 Ba 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 87 Fr 88 Ra 89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No 103 Lr 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg 112 Cn 113 Nh 114 Fl 115 Mc 116 Lv 117 Ts 118 Og Elementum • Systema periodicum
|
|
LQ,W8,oU
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...