Marianus Wendt

Multi tool use

Marianus Wendt
Res apud Vicidata repertae:
Nativitas:
9 Iunii 1985;
TorgauPatria:
Germania
Officium
Officium: Socius Concilii Federalis Germanici, Socius Concilii Federalis Germanici
Munus: Politicus
Consociatio
Factio: Christiana Democratica Unio Germaniae
Religio: Evangelical Lutheran Church
Marianus (Theod. Marian) Wendt (natus Torgaviae die 9 Iunii 1985) est rerum politicarum peritus Germanicus factionis CDU.
Iuventus et munus |
Postquam Torgaviae testimonium maturitatis accepit, Wendt iurisprudentiae et administrationi studebat, diploma accepit et anno 2010 socius operis scientificus Manfredi Kolbe legati ad Dietam Foederalem Germaniae factus est.
Cursus honorum |
Wendt, qui ab anno 2003 sodalis Unionis Iuvenilis et Factionis Christianae Democraticae est, anno 2013 legatus ad Dietam Foederalem Germaniae electus est et ad hunc diem manet.
Nexus externi |

|
Vicimedia Communia plura habent quae ad Marianum Wendt spectant.
|
- Biographia apud pagina Dietae Foederalis Germaniae
- Pagina personalis
0GHq5,XHIYrr1NZ ELqdD,nHM7Cp4iP,w3otR ofb OyHKqb7ugrSL0j dtC7ZN 7HGQhP b19 n,R3u7
Popular posts from this blog
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...