Nativitas: 26 Iunii 1951; Norderney Patria: Germania
Officium
Officium: Socius Concilii Federalis Germanici, Socius Concilii Federalis Germanici, Socius Concilii Federalis Germanici, Socius Concilii Federalis Germanici Munus: Politicus
Consociatio
Factio: Socialis Democratica Factio Germaniae Religio: Ecclesia Catholica Romana
Familia
Coniunx: unknown value
Elvira Drobinski-Weiß (nata die 26 Iunii 1951 in insula Norderney) rerum publicarum perita Germania factionis SPD est.
Index
1Munus
2Cursus honorum
3Familia
4Nexus externi
Munus |
Postquam testimonium maturitatis accepit, Drobinski annis 1971 - 1977 apud Universitatem Oldenburgensem paedagogiae studebat. Tum magistra operam dedit, primo in Saxonia Inferiore, deinde ab anno 1979 in Badenia-Virtembergia. Tandem directrix scholae elementariae in Waldkirch erat.
Cursus honorum |
Drobinski-Weiß ab anno 1976 sodalis factionis SPD est et die 18 Maii 2004 pro legato defuncto Matthia Weisheit legata in Dieta Foederalis Germaniae suffecta est. de hoc die legata Dietae Foederalis manet.
Familia |
Drobinski-Weiß marito nupsit.
Nexus externi |
Vicimedia Communia plura habent quae ad Elvira Drobinski-Weiß spectant.
Biographia apud situm interretialem Dietae Foederalis Germaniae
Chemia Organometallica , disciplina quae partes chemiae organicae inorganicaeque complectitur; moleculas noscit quae vincula covalentes inter carbonium et metallum aut semimetallum continent. Index 1 Exempla 2 Proprietas chemicarum organometallicarum 3 Ramae chemiae organometallicae 4 Fons Exempla | Vitaminum B12 in corpore humano est chemica organometallica, sed non omnes moleculae metallum habentes sunt organometallicae, solum eae in quo vinculum inter carbonium et metallum est covalentum. Ergo, quamquam natriumacetatum (H 3 C-COONa, sal natrii acoris aceti) partem metallicum et partem organicam CH 3 habet, molecula ipsa non est metallorganica, quia vinculum natrii est ionicum et non est inter natrium et carbonium. Similiter chlorophyll et haemoglobinum non sunt chemicae metallorganicae. Etiam hodie, chemica Grignardi qui magnesium continent sunt potior pro synthesis moleculae organicae. Pro harum chemicarum inventa Victori Grignard Donatium No...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...