Evaluating $limlimits_{xtoinfty}int_0^1frac{ln x}{sqrt{x+t}}dt$
$begingroup$
Question: Evaluate the limit of this integral
Attempt:
I got the integral. but for some reason I can't find the limit at all. L'Hopital's doesn't even work
calculus integration limits
$endgroup$
add a comment |
$begingroup$
Question: Evaluate the limit of this integral
Attempt:
I got the integral. but for some reason I can't find the limit at all. L'Hopital's doesn't even work
calculus integration limits
$endgroup$
add a comment |
$begingroup$
Question: Evaluate the limit of this integral
Attempt:
I got the integral. but for some reason I can't find the limit at all. L'Hopital's doesn't even work
calculus integration limits
$endgroup$
Question: Evaluate the limit of this integral
Attempt:
I got the integral. but for some reason I can't find the limit at all. L'Hopital's doesn't even work
calculus integration limits
calculus integration limits
edited yesterday
Asaf Karagila♦
305k33435766
305k33435766
asked yesterday
I Main JayceI Main Jayce
244
244
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$
$$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$
$$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
right)}$$
$endgroup$
$begingroup$
Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
$endgroup$
– I Main Jayce
yesterday
add a comment |
$begingroup$
$$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
$$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$
Now, since $x$ is large
$$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
$$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$
Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3127111%2fevaluating-lim-limits-x-to-infty-int-01-frac-ln-x-sqrtxtdt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$
$$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$
$$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
right)}$$
$endgroup$
$begingroup$
Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
$endgroup$
– I Main Jayce
yesterday
add a comment |
$begingroup$
Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$
$$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$
$$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
right)}$$
$endgroup$
$begingroup$
Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
$endgroup$
– I Main Jayce
yesterday
add a comment |
$begingroup$
Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$
$$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$
$$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
right)}$$
$endgroup$
Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$
$$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$
$$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
right)}$$
edited yesterday
answered yesterday
Paras KhoslaParas Khosla
1,385219
1,385219
$begingroup$
Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
$endgroup$
– I Main Jayce
yesterday
add a comment |
$begingroup$
Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
$endgroup$
– I Main Jayce
yesterday
$begingroup$
Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
$endgroup$
– I Main Jayce
yesterday
$begingroup$
Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
$endgroup$
– I Main Jayce
yesterday
add a comment |
$begingroup$
$$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
$$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$
Now, since $x$ is large
$$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
$$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$
Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.
$endgroup$
add a comment |
$begingroup$
$$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
$$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$
Now, since $x$ is large
$$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
$$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$
Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.
$endgroup$
add a comment |
$begingroup$
$$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
$$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$
Now, since $x$ is large
$$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
$$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$
Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.
$endgroup$
$$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
$$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$
Now, since $x$ is large
$$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
$$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$
Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.
answered yesterday
Claude LeiboviciClaude Leibovici
123k1157134
123k1157134
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3127111%2fevaluating-lim-limits-x-to-infty-int-01-frac-ln-x-sqrtxtdt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown