Evaluating $limlimits_{xtoinfty}int_0^1frac{ln x}{sqrt{x+t}}dt$












2












$begingroup$


Question: Evaluate the limit of this integral
enter image description here
Attempt:
enter image description here
I got the integral. but for some reason I can't find the limit at all. L'Hopital's doesn't even work










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Question: Evaluate the limit of this integral
    enter image description here
    Attempt:
    enter image description here
    I got the integral. but for some reason I can't find the limit at all. L'Hopital's doesn't even work










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Question: Evaluate the limit of this integral
      enter image description here
      Attempt:
      enter image description here
      I got the integral. but for some reason I can't find the limit at all. L'Hopital's doesn't even work










      share|cite|improve this question











      $endgroup$




      Question: Evaluate the limit of this integral
      enter image description here
      Attempt:
      enter image description here
      I got the integral. but for some reason I can't find the limit at all. L'Hopital's doesn't even work







      calculus integration limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      Asaf Karagila

      305k33435766




      305k33435766










      asked yesterday









      I Main JayceI Main Jayce

      244




      244






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$





          $$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$





          $$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
          right)}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
            $endgroup$
            – I Main Jayce
            yesterday



















          3












          $begingroup$

          $$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
          $$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$



          Now, since $x$ is large
          $$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
          $$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$



          Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3127111%2fevaluating-lim-limits-x-to-infty-int-01-frac-ln-x-sqrtxtdt%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$





            $$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$





            $$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
            right)}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
              $endgroup$
              – I Main Jayce
              yesterday
















            3












            $begingroup$

            Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$





            $$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$





            $$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
            right)}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
              $endgroup$
              – I Main Jayce
              yesterday














            3












            3








            3





            $begingroup$

            Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$





            $$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$





            $$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
            right)}$$






            share|cite|improve this answer











            $endgroup$



            Hint:$$lim_{x to infty} ln x int_{0}^{1}dfrac{1}{sqrt{t+x}}mathrm dt=2cdotlim_{x to infty}dfrac{sqrt{1+x}-sqrt{x}}{1/ln x}=2cdot lim_{xto infty}dfrac{ln x}{frac{1}{sqrt{1+x}-sqrt{x}}}$$





            $$dfrac{1}{sqrt{1+x}-sqrt{x}}cdotdfrac{sqrt{x+1}+sqrt{x}}{sqrt{x+1}+sqrt{x}}=sqrt{x+1}+sqrt{x} $$





            $$2cdotlim_{xto infty} dfrac{ln x}{sqrt{x+1}+sqrt{x}}=2lim_{xto infty}dfrac{1/x}{1/2cdotleft(frac{1}{sqrt{x+1}}+frac{1}{sqrt{x}}
            right)}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited yesterday

























            answered yesterday









            Paras KhoslaParas Khosla

            1,385219




            1,385219












            • $begingroup$
              Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
              $endgroup$
              – I Main Jayce
              yesterday


















            • $begingroup$
              Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
              $endgroup$
              – I Main Jayce
              yesterday
















            $begingroup$
            Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
            $endgroup$
            – I Main Jayce
            yesterday




            $begingroup$
            Hi Paras, I've tried that. I rationalized the numerator and tried L'Hopital's. But it will just end on a loop. Could you please give further hints?
            $endgroup$
            – I Main Jayce
            yesterday











            3












            $begingroup$

            $$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
            $$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$



            Now, since $x$ is large
            $$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
            $$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$



            Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.






            share|cite|improve this answer









            $endgroup$


















              3












              $begingroup$

              $$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
              $$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$



              Now, since $x$ is large
              $$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
              $$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$



              Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.






              share|cite|improve this answer









              $endgroup$
















                3












                3








                3





                $begingroup$

                $$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
                $$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$



                Now, since $x$ is large
                $$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
                $$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$



                Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.






                share|cite|improve this answer









                $endgroup$



                $$ intdfrac{log( x)}{sqrt{t+x}}, dt=2 sqrt{t+x} log (x)$$
                $$ int_{0}^{1}dfrac{log( x)}{sqrt{t+x}}, dt=2 left(sqrt{x+1}-sqrt{x}right) log (x)=2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)$$



                Now, since $x$ is large
                $$sqrt{1+frac{1}{x}}=1+frac{1}{2 x}+Oleft(frac{1}{x^2}right)$$
                $$2sqrt{x}left(sqrt{1+frac{1}{x}}-1 right)log(x)=2sqrt{x}left(frac{1}{2 x}+Oleft(frac{1}{x^2}right) right)log(x)simfrac{log(x)}{sqrt x}= 2frac{log(sqrt x)}{sqrt x}=2frac {log(y)}y$$



                Try with $x=100$; the exact result would be $2 left(sqrt{101}-10right) log (100)approx 0.459371$ while the approximation gives $frac{log (10)}{5}approx 0.460517$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                Claude LeiboviciClaude Leibovici

                123k1157134




                123k1157134






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3127111%2fevaluating-lim-limits-x-to-infty-int-01-frac-ln-x-sqrtxtdt%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to label and detect the document text images

                    Tabula Rosettana

                    Aureus (color)