Set every element to zero in matrix unless it's 1 or 1/2












7












$begingroup$


I have the following code:



max = 1;

PotentialTilde[V0_] :=
SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1 }];

a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]] //
MatrixForm


That generates this matrix:



<span class=$$ $$">





How do I set every element that is not equal to 1 or 1/2 to 0?










share|improve this question











$endgroup$












  • $begingroup$
    Something like a /. {1 -> 0, 1/2 -> 0} should do it.
    $endgroup$
    – Carl Lange
    14 hours ago










  • $begingroup$
    Yeah, but I want the opposite. Anything that is NOT equal to 1 and 1/2
    $endgroup$
    – SuperCiocia
    14 hours ago










  • $begingroup$
    Also, your command does not change anything to my a
    $endgroup$
    – SuperCiocia
    14 hours ago






  • 1




    $begingroup$
    Look up Except. Also, if you want to change a, you have to assign the result to a again. (In Mathematica, barely anything changes variables, most things are immutable)
    $endgroup$
    – Lukas Lang
    14 hours ago










  • $begingroup$
    Ah, sorry, I misread (and I wasn't at a computer). Glad you've found the answer!
    $endgroup$
    – Carl Lange
    12 hours ago
















7












$begingroup$


I have the following code:



max = 1;

PotentialTilde[V0_] :=
SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1 }];

a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]] //
MatrixForm


That generates this matrix:



<span class=$$ $$">





How do I set every element that is not equal to 1 or 1/2 to 0?










share|improve this question











$endgroup$












  • $begingroup$
    Something like a /. {1 -> 0, 1/2 -> 0} should do it.
    $endgroup$
    – Carl Lange
    14 hours ago










  • $begingroup$
    Yeah, but I want the opposite. Anything that is NOT equal to 1 and 1/2
    $endgroup$
    – SuperCiocia
    14 hours ago










  • $begingroup$
    Also, your command does not change anything to my a
    $endgroup$
    – SuperCiocia
    14 hours ago






  • 1




    $begingroup$
    Look up Except. Also, if you want to change a, you have to assign the result to a again. (In Mathematica, barely anything changes variables, most things are immutable)
    $endgroup$
    – Lukas Lang
    14 hours ago










  • $begingroup$
    Ah, sorry, I misread (and I wasn't at a computer). Glad you've found the answer!
    $endgroup$
    – Carl Lange
    12 hours ago














7












7








7





$begingroup$


I have the following code:



max = 1;

PotentialTilde[V0_] :=
SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1 }];

a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]] //
MatrixForm


That generates this matrix:



<span class=$$ $$">





How do I set every element that is not equal to 1 or 1/2 to 0?










share|improve this question











$endgroup$




I have the following code:



max = 1;

PotentialTilde[V0_] :=
SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1 }];

a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]] //
MatrixForm


That generates this matrix:



<span class=$$ $$">





How do I set every element that is not equal to 1 or 1/2 to 0?







list-manipulation matrix sparse-arrays






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 6 hours ago









m_goldberg

84.8k872196




84.8k872196










asked 14 hours ago









SuperCiociaSuperCiocia

545311




545311












  • $begingroup$
    Something like a /. {1 -> 0, 1/2 -> 0} should do it.
    $endgroup$
    – Carl Lange
    14 hours ago










  • $begingroup$
    Yeah, but I want the opposite. Anything that is NOT equal to 1 and 1/2
    $endgroup$
    – SuperCiocia
    14 hours ago










  • $begingroup$
    Also, your command does not change anything to my a
    $endgroup$
    – SuperCiocia
    14 hours ago






  • 1




    $begingroup$
    Look up Except. Also, if you want to change a, you have to assign the result to a again. (In Mathematica, barely anything changes variables, most things are immutable)
    $endgroup$
    – Lukas Lang
    14 hours ago










  • $begingroup$
    Ah, sorry, I misread (and I wasn't at a computer). Glad you've found the answer!
    $endgroup$
    – Carl Lange
    12 hours ago


















  • $begingroup$
    Something like a /. {1 -> 0, 1/2 -> 0} should do it.
    $endgroup$
    – Carl Lange
    14 hours ago










  • $begingroup$
    Yeah, but I want the opposite. Anything that is NOT equal to 1 and 1/2
    $endgroup$
    – SuperCiocia
    14 hours ago










  • $begingroup$
    Also, your command does not change anything to my a
    $endgroup$
    – SuperCiocia
    14 hours ago






  • 1




    $begingroup$
    Look up Except. Also, if you want to change a, you have to assign the result to a again. (In Mathematica, barely anything changes variables, most things are immutable)
    $endgroup$
    – Lukas Lang
    14 hours ago










  • $begingroup$
    Ah, sorry, I misread (and I wasn't at a computer). Glad you've found the answer!
    $endgroup$
    – Carl Lange
    12 hours ago
















$begingroup$
Something like a /. {1 -> 0, 1/2 -> 0} should do it.
$endgroup$
– Carl Lange
14 hours ago




$begingroup$
Something like a /. {1 -> 0, 1/2 -> 0} should do it.
$endgroup$
– Carl Lange
14 hours ago












$begingroup$
Yeah, but I want the opposite. Anything that is NOT equal to 1 and 1/2
$endgroup$
– SuperCiocia
14 hours ago




$begingroup$
Yeah, but I want the opposite. Anything that is NOT equal to 1 and 1/2
$endgroup$
– SuperCiocia
14 hours ago












$begingroup$
Also, your command does not change anything to my a
$endgroup$
– SuperCiocia
14 hours ago




$begingroup$
Also, your command does not change anything to my a
$endgroup$
– SuperCiocia
14 hours ago




1




1




$begingroup$
Look up Except. Also, if you want to change a, you have to assign the result to a again. (In Mathematica, barely anything changes variables, most things are immutable)
$endgroup$
– Lukas Lang
14 hours ago




$begingroup$
Look up Except. Also, if you want to change a, you have to assign the result to a again. (In Mathematica, barely anything changes variables, most things are immutable)
$endgroup$
– Lukas Lang
14 hours ago












$begingroup$
Ah, sorry, I misread (and I wasn't at a computer). Glad you've found the answer!
$endgroup$
– Carl Lange
12 hours ago




$begingroup$
Ah, sorry, I misread (and I wasn't at a computer). Glad you've found the answer!
$endgroup$
– Carl Lange
12 hours ago










4 Answers
4






active

oldest

votes


















11












$begingroup$

Be careful with assigning a "form" (e.g. MatrixForm) to a variable. Another observation is that a is a SparseArray uses rules to store the values and since ReplaceAll works with the FullForm of an expression care has to be taken (using Normal will make the array a regular matrix again).



This should work:



max = 1;
PotentialTilde[V0_] := SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1}];

a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
(* a // MatrixForm *)

aMod = (a // Normal) /. x_?NumericQ /; Not@MatchQ[x, 1 | 1/2] -> 0;
aMod // MatrixForm


Matrix



Lukas Lang's suggestion is even nicer:



aMod = (a // Normal) /. Except[1 | 1/2, _?NumericQ] -> 0;


UPDATE



@HenrikSchumacher is of course right in warning against the use of Normal for a SparseArray -- after all there may have been a good reason for using it in the first place. So for a pattern replacement solution the use of ArrayRules may be safer:



aMod = ( a // ArrayRules ) // RightComposition[
ReplaceAll @ Rule[
Rule[{row_?NumericQ, col_?NumericQ}, Except[ 1 | 1/2, _?NumericQ ],
Rule[{row,col}, 0]
]
, SparseArray
];
aMod // MatrixForm





share|improve this answer











$endgroup$









  • 1




    $begingroup$
    Huh, never apply Normal to SparseArrays. Hell might break loose... ;) (Anyways, +1 of course.)
    $endgroup$
    – Henrik Schumacher
    13 hours ago





















10












$begingroup$

A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
B = A (1 - Unitize[A - 1/2] Unitize[A - 1]);
B // MatrixForm




It is even much more efficient to use machine precision numbers:



max = 100;
A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
B = A (1 - Unitize[A - 1/2] Unitize[A - 1]); // RepeatedTiming // First

NA = N[A];
NB1 = NA (1. - Unitize[NA - 0.5] Unitize[NA - 1.]); // RepeatedTiming // First

Max[Abs[B - NB]]



0.269



0.0163



0.




It is even faster (but also quite a bit more tedious, though), to operate only on the list of nonzero values by using the low-level representation of SparseArray and the following undocumented constructor:



NB2 = SparseArray[
SparseArray @@ {
Automatic,
Dimensions[NA],
NA["Background"],
{1(*version of SparseArray implementation*),
{
NA["RowPointers"],
NA["ColumnIndices"]
},
With[{vals = NA["NonzeroValues"]},
vals Subtract[1., Unitize[vals - 0.5] Unitize[vals - 1.]]
]
}
}
]; // RepeatedTiming // First



0.00670




The advantage over modifying ArrayRules is that it leaves all arrays packed (they can only be packed for machine precisision numbers or machine integers; not for symbolic entries), while ArrayRules unpacks the list of nonzero positions and nonzero values in order to generate the symbolic list of rules.



Should you wonder why SparseArray appears twice here: SparseArray@@{...} constructs the sparse array literally by the row pointers, column indices and "nonzero values" provided, even if there are actually zeroes among the "nonzero values"; wrapping this with a further SparseArray removes these "ghosts" from the internal representation, so that NB2["NonzeroValues"] returns really only the nonzero values.






share|improve this answer











$endgroup$













  • $begingroup$
    (+1) Very concise and elegant. I updated my solution - maybe for a pattern matching solution applying ArrayRules instead of Normal is saver?
    $endgroup$
    – gwr
    12 hours ago










  • $begingroup$
    @gwr Jepp, it definitely is.
    $endgroup$
    – Henrik Schumacher
    12 hours ago



















5












$begingroup$

a cannot be a MatrixForm:



(a = KroneckerProduct[PotentialTilde[1], 
PotentialTilde[1]]) // MatrixForm


Convert to a regular Matrix:



Normal[a] /. {ij_ /; (NumberQ[
ij] && ( ij != 1/2 && ij != 1)) :> 0}

(a = Normal[
a] /. {ij_ /; (NumberQ[
ij] && ( ij != 1/2 && ij != 1)) :>
0}) // MatrixForm
a

MatrixForm[a]





share|improve this answer









$endgroup$





















    1












    $begingroup$

    a UnitStep[a - 1/2] // MatrixForm



    $left(
    begin{array}{ccccccccc}
    1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 & 0 \
    frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 \
    0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 \
    frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 \
    0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 \
    0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} \
    0 & 0 & 0 & frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 \
    0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} \
    0 & 0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 \
    end{array}
    right)$







    share|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "387"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189758%2fset-every-element-to-zero-in-matrix-unless-its-1-or-1-2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      11












      $begingroup$

      Be careful with assigning a "form" (e.g. MatrixForm) to a variable. Another observation is that a is a SparseArray uses rules to store the values and since ReplaceAll works with the FullForm of an expression care has to be taken (using Normal will make the array a regular matrix again).



      This should work:



      max = 1;
      PotentialTilde[V0_] := SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
      Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1}];

      a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      (* a // MatrixForm *)

      aMod = (a // Normal) /. x_?NumericQ /; Not@MatchQ[x, 1 | 1/2] -> 0;
      aMod // MatrixForm


      Matrix



      Lukas Lang's suggestion is even nicer:



      aMod = (a // Normal) /. Except[1 | 1/2, _?NumericQ] -> 0;


      UPDATE



      @HenrikSchumacher is of course right in warning against the use of Normal for a SparseArray -- after all there may have been a good reason for using it in the first place. So for a pattern replacement solution the use of ArrayRules may be safer:



      aMod = ( a // ArrayRules ) // RightComposition[
      ReplaceAll @ Rule[
      Rule[{row_?NumericQ, col_?NumericQ}, Except[ 1 | 1/2, _?NumericQ ],
      Rule[{row,col}, 0]
      ]
      , SparseArray
      ];
      aMod // MatrixForm





      share|improve this answer











      $endgroup$









      • 1




        $begingroup$
        Huh, never apply Normal to SparseArrays. Hell might break loose... ;) (Anyways, +1 of course.)
        $endgroup$
        – Henrik Schumacher
        13 hours ago


















      11












      $begingroup$

      Be careful with assigning a "form" (e.g. MatrixForm) to a variable. Another observation is that a is a SparseArray uses rules to store the values and since ReplaceAll works with the FullForm of an expression care has to be taken (using Normal will make the array a regular matrix again).



      This should work:



      max = 1;
      PotentialTilde[V0_] := SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
      Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1}];

      a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      (* a // MatrixForm *)

      aMod = (a // Normal) /. x_?NumericQ /; Not@MatchQ[x, 1 | 1/2] -> 0;
      aMod // MatrixForm


      Matrix



      Lukas Lang's suggestion is even nicer:



      aMod = (a // Normal) /. Except[1 | 1/2, _?NumericQ] -> 0;


      UPDATE



      @HenrikSchumacher is of course right in warning against the use of Normal for a SparseArray -- after all there may have been a good reason for using it in the first place. So for a pattern replacement solution the use of ArrayRules may be safer:



      aMod = ( a // ArrayRules ) // RightComposition[
      ReplaceAll @ Rule[
      Rule[{row_?NumericQ, col_?NumericQ}, Except[ 1 | 1/2, _?NumericQ ],
      Rule[{row,col}, 0]
      ]
      , SparseArray
      ];
      aMod // MatrixForm





      share|improve this answer











      $endgroup$









      • 1




        $begingroup$
        Huh, never apply Normal to SparseArrays. Hell might break loose... ;) (Anyways, +1 of course.)
        $endgroup$
        – Henrik Schumacher
        13 hours ago
















      11












      11








      11





      $begingroup$

      Be careful with assigning a "form" (e.g. MatrixForm) to a variable. Another observation is that a is a SparseArray uses rules to store the values and since ReplaceAll works with the FullForm of an expression care has to be taken (using Normal will make the array a regular matrix again).



      This should work:



      max = 1;
      PotentialTilde[V0_] := SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
      Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1}];

      a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      (* a // MatrixForm *)

      aMod = (a // Normal) /. x_?NumericQ /; Not@MatchQ[x, 1 | 1/2] -> 0;
      aMod // MatrixForm


      Matrix



      Lukas Lang's suggestion is even nicer:



      aMod = (a // Normal) /. Except[1 | 1/2, _?NumericQ] -> 0;


      UPDATE



      @HenrikSchumacher is of course right in warning against the use of Normal for a SparseArray -- after all there may have been a good reason for using it in the first place. So for a pattern replacement solution the use of ArrayRules may be safer:



      aMod = ( a // ArrayRules ) // RightComposition[
      ReplaceAll @ Rule[
      Rule[{row_?NumericQ, col_?NumericQ}, Except[ 1 | 1/2, _?NumericQ ],
      Rule[{row,col}, 0]
      ]
      , SparseArray
      ];
      aMod // MatrixForm





      share|improve this answer











      $endgroup$



      Be careful with assigning a "form" (e.g. MatrixForm) to a variable. Another observation is that a is a SparseArray uses rules to store the values and since ReplaceAll works with the FullForm of an expression care has to be taken (using Normal will make the array a regular matrix again).



      This should work:



      max = 1;
      PotentialTilde[V0_] := SparseArray[{Band[{1, 1}] -> V0/1, Band[{2, 1}] -> V0/2,
      Band[{1, 2}] -> V0/2}, {2*max + 1, 2*max + 1}];

      a = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      (* a // MatrixForm *)

      aMod = (a // Normal) /. x_?NumericQ /; Not@MatchQ[x, 1 | 1/2] -> 0;
      aMod // MatrixForm


      Matrix



      Lukas Lang's suggestion is even nicer:



      aMod = (a // Normal) /. Except[1 | 1/2, _?NumericQ] -> 0;


      UPDATE



      @HenrikSchumacher is of course right in warning against the use of Normal for a SparseArray -- after all there may have been a good reason for using it in the first place. So for a pattern replacement solution the use of ArrayRules may be safer:



      aMod = ( a // ArrayRules ) // RightComposition[
      ReplaceAll @ Rule[
      Rule[{row_?NumericQ, col_?NumericQ}, Except[ 1 | 1/2, _?NumericQ ],
      Rule[{row,col}, 0]
      ]
      , SparseArray
      ];
      aMod // MatrixForm






      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 12 hours ago

























      answered 14 hours ago









      gwrgwr

      7,87322659




      7,87322659








      • 1




        $begingroup$
        Huh, never apply Normal to SparseArrays. Hell might break loose... ;) (Anyways, +1 of course.)
        $endgroup$
        – Henrik Schumacher
        13 hours ago
















      • 1




        $begingroup$
        Huh, never apply Normal to SparseArrays. Hell might break loose... ;) (Anyways, +1 of course.)
        $endgroup$
        – Henrik Schumacher
        13 hours ago










      1




      1




      $begingroup$
      Huh, never apply Normal to SparseArrays. Hell might break loose... ;) (Anyways, +1 of course.)
      $endgroup$
      – Henrik Schumacher
      13 hours ago






      $begingroup$
      Huh, never apply Normal to SparseArrays. Hell might break loose... ;) (Anyways, +1 of course.)
      $endgroup$
      – Henrik Schumacher
      13 hours ago













      10












      $begingroup$

      A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      B = A (1 - Unitize[A - 1/2] Unitize[A - 1]);
      B // MatrixForm




      It is even much more efficient to use machine precision numbers:



      max = 100;
      A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      B = A (1 - Unitize[A - 1/2] Unitize[A - 1]); // RepeatedTiming // First

      NA = N[A];
      NB1 = NA (1. - Unitize[NA - 0.5] Unitize[NA - 1.]); // RepeatedTiming // First

      Max[Abs[B - NB]]



      0.269



      0.0163



      0.




      It is even faster (but also quite a bit more tedious, though), to operate only on the list of nonzero values by using the low-level representation of SparseArray and the following undocumented constructor:



      NB2 = SparseArray[
      SparseArray @@ {
      Automatic,
      Dimensions[NA],
      NA["Background"],
      {1(*version of SparseArray implementation*),
      {
      NA["RowPointers"],
      NA["ColumnIndices"]
      },
      With[{vals = NA["NonzeroValues"]},
      vals Subtract[1., Unitize[vals - 0.5] Unitize[vals - 1.]]
      ]
      }
      }
      ]; // RepeatedTiming // First



      0.00670




      The advantage over modifying ArrayRules is that it leaves all arrays packed (they can only be packed for machine precisision numbers or machine integers; not for symbolic entries), while ArrayRules unpacks the list of nonzero positions and nonzero values in order to generate the symbolic list of rules.



      Should you wonder why SparseArray appears twice here: SparseArray@@{...} constructs the sparse array literally by the row pointers, column indices and "nonzero values" provided, even if there are actually zeroes among the "nonzero values"; wrapping this with a further SparseArray removes these "ghosts" from the internal representation, so that NB2["NonzeroValues"] returns really only the nonzero values.






      share|improve this answer











      $endgroup$













      • $begingroup$
        (+1) Very concise and elegant. I updated my solution - maybe for a pattern matching solution applying ArrayRules instead of Normal is saver?
        $endgroup$
        – gwr
        12 hours ago










      • $begingroup$
        @gwr Jepp, it definitely is.
        $endgroup$
        – Henrik Schumacher
        12 hours ago
















      10












      $begingroup$

      A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      B = A (1 - Unitize[A - 1/2] Unitize[A - 1]);
      B // MatrixForm




      It is even much more efficient to use machine precision numbers:



      max = 100;
      A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      B = A (1 - Unitize[A - 1/2] Unitize[A - 1]); // RepeatedTiming // First

      NA = N[A];
      NB1 = NA (1. - Unitize[NA - 0.5] Unitize[NA - 1.]); // RepeatedTiming // First

      Max[Abs[B - NB]]



      0.269



      0.0163



      0.




      It is even faster (but also quite a bit more tedious, though), to operate only on the list of nonzero values by using the low-level representation of SparseArray and the following undocumented constructor:



      NB2 = SparseArray[
      SparseArray @@ {
      Automatic,
      Dimensions[NA],
      NA["Background"],
      {1(*version of SparseArray implementation*),
      {
      NA["RowPointers"],
      NA["ColumnIndices"]
      },
      With[{vals = NA["NonzeroValues"]},
      vals Subtract[1., Unitize[vals - 0.5] Unitize[vals - 1.]]
      ]
      }
      }
      ]; // RepeatedTiming // First



      0.00670




      The advantage over modifying ArrayRules is that it leaves all arrays packed (they can only be packed for machine precisision numbers or machine integers; not for symbolic entries), while ArrayRules unpacks the list of nonzero positions and nonzero values in order to generate the symbolic list of rules.



      Should you wonder why SparseArray appears twice here: SparseArray@@{...} constructs the sparse array literally by the row pointers, column indices and "nonzero values" provided, even if there are actually zeroes among the "nonzero values"; wrapping this with a further SparseArray removes these "ghosts" from the internal representation, so that NB2["NonzeroValues"] returns really only the nonzero values.






      share|improve this answer











      $endgroup$













      • $begingroup$
        (+1) Very concise and elegant. I updated my solution - maybe for a pattern matching solution applying ArrayRules instead of Normal is saver?
        $endgroup$
        – gwr
        12 hours ago










      • $begingroup$
        @gwr Jepp, it definitely is.
        $endgroup$
        – Henrik Schumacher
        12 hours ago














      10












      10








      10





      $begingroup$

      A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      B = A (1 - Unitize[A - 1/2] Unitize[A - 1]);
      B // MatrixForm




      It is even much more efficient to use machine precision numbers:



      max = 100;
      A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      B = A (1 - Unitize[A - 1/2] Unitize[A - 1]); // RepeatedTiming // First

      NA = N[A];
      NB1 = NA (1. - Unitize[NA - 0.5] Unitize[NA - 1.]); // RepeatedTiming // First

      Max[Abs[B - NB]]



      0.269



      0.0163



      0.




      It is even faster (but also quite a bit more tedious, though), to operate only on the list of nonzero values by using the low-level representation of SparseArray and the following undocumented constructor:



      NB2 = SparseArray[
      SparseArray @@ {
      Automatic,
      Dimensions[NA],
      NA["Background"],
      {1(*version of SparseArray implementation*),
      {
      NA["RowPointers"],
      NA["ColumnIndices"]
      },
      With[{vals = NA["NonzeroValues"]},
      vals Subtract[1., Unitize[vals - 0.5] Unitize[vals - 1.]]
      ]
      }
      }
      ]; // RepeatedTiming // First



      0.00670




      The advantage over modifying ArrayRules is that it leaves all arrays packed (they can only be packed for machine precisision numbers or machine integers; not for symbolic entries), while ArrayRules unpacks the list of nonzero positions and nonzero values in order to generate the symbolic list of rules.



      Should you wonder why SparseArray appears twice here: SparseArray@@{...} constructs the sparse array literally by the row pointers, column indices and "nonzero values" provided, even if there are actually zeroes among the "nonzero values"; wrapping this with a further SparseArray removes these "ghosts" from the internal representation, so that NB2["NonzeroValues"] returns really only the nonzero values.






      share|improve this answer











      $endgroup$



      A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      B = A (1 - Unitize[A - 1/2] Unitize[A - 1]);
      B // MatrixForm




      It is even much more efficient to use machine precision numbers:



      max = 100;
      A = KroneckerProduct[PotentialTilde[1], PotentialTilde[1]];
      B = A (1 - Unitize[A - 1/2] Unitize[A - 1]); // RepeatedTiming // First

      NA = N[A];
      NB1 = NA (1. - Unitize[NA - 0.5] Unitize[NA - 1.]); // RepeatedTiming // First

      Max[Abs[B - NB]]



      0.269



      0.0163



      0.




      It is even faster (but also quite a bit more tedious, though), to operate only on the list of nonzero values by using the low-level representation of SparseArray and the following undocumented constructor:



      NB2 = SparseArray[
      SparseArray @@ {
      Automatic,
      Dimensions[NA],
      NA["Background"],
      {1(*version of SparseArray implementation*),
      {
      NA["RowPointers"],
      NA["ColumnIndices"]
      },
      With[{vals = NA["NonzeroValues"]},
      vals Subtract[1., Unitize[vals - 0.5] Unitize[vals - 1.]]
      ]
      }
      }
      ]; // RepeatedTiming // First



      0.00670




      The advantage over modifying ArrayRules is that it leaves all arrays packed (they can only be packed for machine precisision numbers or machine integers; not for symbolic entries), while ArrayRules unpacks the list of nonzero positions and nonzero values in order to generate the symbolic list of rules.



      Should you wonder why SparseArray appears twice here: SparseArray@@{...} constructs the sparse array literally by the row pointers, column indices and "nonzero values" provided, even if there are actually zeroes among the "nonzero values"; wrapping this with a further SparseArray removes these "ghosts" from the internal representation, so that NB2["NonzeroValues"] returns really only the nonzero values.







      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited 3 hours ago

























      answered 13 hours ago









      Henrik SchumacherHenrik Schumacher

      50.7k469145




      50.7k469145












      • $begingroup$
        (+1) Very concise and elegant. I updated my solution - maybe for a pattern matching solution applying ArrayRules instead of Normal is saver?
        $endgroup$
        – gwr
        12 hours ago










      • $begingroup$
        @gwr Jepp, it definitely is.
        $endgroup$
        – Henrik Schumacher
        12 hours ago


















      • $begingroup$
        (+1) Very concise and elegant. I updated my solution - maybe for a pattern matching solution applying ArrayRules instead of Normal is saver?
        $endgroup$
        – gwr
        12 hours ago










      • $begingroup$
        @gwr Jepp, it definitely is.
        $endgroup$
        – Henrik Schumacher
        12 hours ago
















      $begingroup$
      (+1) Very concise and elegant. I updated my solution - maybe for a pattern matching solution applying ArrayRules instead of Normal is saver?
      $endgroup$
      – gwr
      12 hours ago




      $begingroup$
      (+1) Very concise and elegant. I updated my solution - maybe for a pattern matching solution applying ArrayRules instead of Normal is saver?
      $endgroup$
      – gwr
      12 hours ago












      $begingroup$
      @gwr Jepp, it definitely is.
      $endgroup$
      – Henrik Schumacher
      12 hours ago




      $begingroup$
      @gwr Jepp, it definitely is.
      $endgroup$
      – Henrik Schumacher
      12 hours ago











      5












      $begingroup$

      a cannot be a MatrixForm:



      (a = KroneckerProduct[PotentialTilde[1], 
      PotentialTilde[1]]) // MatrixForm


      Convert to a regular Matrix:



      Normal[a] /. {ij_ /; (NumberQ[
      ij] && ( ij != 1/2 && ij != 1)) :> 0}

      (a = Normal[
      a] /. {ij_ /; (NumberQ[
      ij] && ( ij != 1/2 && ij != 1)) :>
      0}) // MatrixForm
      a

      MatrixForm[a]





      share|improve this answer









      $endgroup$


















        5












        $begingroup$

        a cannot be a MatrixForm:



        (a = KroneckerProduct[PotentialTilde[1], 
        PotentialTilde[1]]) // MatrixForm


        Convert to a regular Matrix:



        Normal[a] /. {ij_ /; (NumberQ[
        ij] && ( ij != 1/2 && ij != 1)) :> 0}

        (a = Normal[
        a] /. {ij_ /; (NumberQ[
        ij] && ( ij != 1/2 && ij != 1)) :>
        0}) // MatrixForm
        a

        MatrixForm[a]





        share|improve this answer









        $endgroup$
















          5












          5








          5





          $begingroup$

          a cannot be a MatrixForm:



          (a = KroneckerProduct[PotentialTilde[1], 
          PotentialTilde[1]]) // MatrixForm


          Convert to a regular Matrix:



          Normal[a] /. {ij_ /; (NumberQ[
          ij] && ( ij != 1/2 && ij != 1)) :> 0}

          (a = Normal[
          a] /. {ij_ /; (NumberQ[
          ij] && ( ij != 1/2 && ij != 1)) :>
          0}) // MatrixForm
          a

          MatrixForm[a]





          share|improve this answer









          $endgroup$



          a cannot be a MatrixForm:



          (a = KroneckerProduct[PotentialTilde[1], 
          PotentialTilde[1]]) // MatrixForm


          Convert to a regular Matrix:



          Normal[a] /. {ij_ /; (NumberQ[
          ij] && ( ij != 1/2 && ij != 1)) :> 0}

          (a = Normal[
          a] /. {ij_ /; (NumberQ[
          ij] && ( ij != 1/2 && ij != 1)) :>
          0}) // MatrixForm
          a

          MatrixForm[a]






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 14 hours ago









          Craig CarterCraig Carter

          529412




          529412























              1












              $begingroup$

              a UnitStep[a - 1/2] // MatrixForm



              $left(
              begin{array}{ccccccccc}
              1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 & 0 \
              frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 \
              0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 \
              frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 \
              0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 \
              0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} \
              0 & 0 & 0 & frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 \
              0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} \
              0 & 0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 \
              end{array}
              right)$







              share|improve this answer











              $endgroup$


















                1












                $begingroup$

                a UnitStep[a - 1/2] // MatrixForm



                $left(
                begin{array}{ccccccccc}
                1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 & 0 \
                frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 \
                0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 \
                frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 \
                0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 \
                0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} \
                0 & 0 & 0 & frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 \
                0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} \
                0 & 0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 \
                end{array}
                right)$







                share|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  a UnitStep[a - 1/2] // MatrixForm



                  $left(
                  begin{array}{ccccccccc}
                  1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 & 0 \
                  frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 \
                  0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 \
                  frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 \
                  0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 \
                  0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} \
                  0 & 0 & 0 & frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 \
                  0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} \
                  0 & 0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 \
                  end{array}
                  right)$







                  share|improve this answer











                  $endgroup$



                  a UnitStep[a - 1/2] // MatrixForm



                  $left(
                  begin{array}{ccccccccc}
                  1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 & 0 \
                  frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 & 0 & 0 \
                  0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} & 0 & 0 & 0 \
                  frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 & 0 \
                  0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} & 0 & frac{1}{2} & 0 \
                  0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & 0 & 0 & frac{1}{2} \
                  0 & 0 & 0 & frac{1}{2} & 0 & 0 & 1 & frac{1}{2} & 0 \
                  0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 & frac{1}{2} \
                  0 & 0 & 0 & 0 & 0 & frac{1}{2} & 0 & frac{1}{2} & 1 \
                  end{array}
                  right)$








                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 4 hours ago

























                  answered 4 hours ago









                  Okkes DulgerciOkkes Dulgerci

                  4,4251817




                  4,4251817






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189758%2fset-every-element-to-zero-in-matrix-unless-its-1-or-1-2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to label and detect the document text images

                      Tabula Rosettana

                      Aureus (color)