Rawalpindi

Multi tool use

Rawalpindi
Res apud Vicidata repertae:
Civitas:
PakistaniaLocus:
33°36′3″N 73°4′4″ENumerus incolarum:
2 098 231Situs interretialis
Nomen officiale:
راولپنڈی, راولپنڈی
Gubernium
Consilium: Rawalpindi Municipal Corporation
Geographia
Superficies: 5 286 chiliometrum quadratum

Statio ferroviaria Rawalpindensis

Situs districtûs Rawalpindensis in Pakistania
Rawalpindi (Paniabice et Urdu راولپنڈى, Rāwalpiṇḍī), saepe Pindi (پنڈی), est quinta a maxima urbs Pakistaniae, in provincia Paniaba, tredecim chiliometra ad meridiem Islamabadae sita. Censu anno 2014 habito, 3 198 911 incolas habet. Inter annos 1959 et 1966 caput Pakistaniae fuit.
Pinacotheca |
Universitas mulierum Fatimae Jinnae
Nexus externi |

|
Vicimedia Communia plura habent quae ad Rawalpindi spectant.
|
Asiae urbes milies milium incolarum (urbibus Indicis et Sinicis exceptis)
Adana • Ahvaz • Almata • Ancyra • Attalea • Bacua • Bagdatum • Bancocum • Bandung • Basra • Bekasi • Berytus • Busan • Cabura • Caesarea in Cappadocia • Caloocan • Cần Thơ • Celiabinsca • Chittagong • Crasnoiarium • Cuala Lumpuria • Dacca • Daegu • Daejeon • Damascus • Urbs Davaensis • Depok • Dubai • Emesa • Erevanum • Faisalabad • Fukuoka • Gaziantep • Gedda • Comum • Goyang • Gujranwala • Hải Phòng • Halapia • Hanoi • Hirosima • Hochiminhopolis • Hyderabad • Iconium • Incheon • Isfahanum • Jakarta • Johor Bahru • Karachi • Karadsch • Kawasaki • Khulna • Klang • Kōbe • Kuangiu • Kyotum • Lahorium • Makassar • Mandale • Manila • Mexatum • Mecca • Medan • Medina • Mausilium • Multanum • Nagoya • Novosibirscum • Omium • Osaka • Palembang • Peshawar • Philadelphia • Phnom Penh • Prusa • Pyeongyang • Urbs Quezon • Rawalpindi • Riad • Saitama • Ṣanʾāʿ • Sapporum • Sirasium • Semarang • Sendai • Seongnam • Seulum • Singapura • Smyrna • Sulaimaniyya • Surabaya • Suwon • Tangerang • Tangerang Selatan • Tashkent • Tauris • Teheranum • Tiphlis • Tokium • Ulanbatoria • Ulsan • Yangon • Yokohama
Opus geopoliticum • Maximae urbes orbis terrarum
Capsae cognatae: Urbes Asiae capitales • Urbes Africae maximae • Urbes Americae Australis maximae • Urbes Americae Septentrionalis maximae • Urbes Europae maximae • Urbes Indiae maximae • Urbes Oceaniae maximae • Urbes Sericae maximae
3O,qELoY0l4xHmVX4 EMQax7 aohuFjtv9xE0RX,YtKPeo5fZ9lMYxkp67iFU9y7n,eMrhacK8HeL3Pzx8uLYh eqa,tu,YLvEo,x9Hy
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...