Gemini

Multi tool use
Vide etiam paginam discretivam: Gemini (discretiva)

Gemini identici vel monozygotici
Gemini[1][2] vel gemelli[1][2] vel didymi[3][4] sunt bini partus eodem utero editi. Gemini non solum ad homines (quamquam praecipue) sed in medicina veterinaria etiam ad ea referuntur animalia (ut armenta et pleraque pecora), quae naturaliter unum tantum partum ferunt. Itaque hoc termino non utimur de multiparis animalibus (sicut canibus et felibus) loquentes.
De formis geminorum |
Sunt duae praecipuae formae geminorum:
- Gemini identici uno et eodem diviso ovo fecundato creati. Qui gemini monozygotici genotypum inter se plene communicant. Studia scientifica geminorum ad geminos identicos pertinere solent. Gemini siamenses semper monozygotici sunt.
- Gemini fraterni duobus creati separatis zygotis, quae diversis spermatozoidis fecundata sunt. Qui gemini dizygotici genotypis inter se differentes diversi sexus esse possunt.
Nexus interni
Apollo et Artemis, gemini mythici Greaci
Castor et Pollux, gemini mythici Greaci
Iacob et Esau, praeclari gemini biblici
Romulus et Remus, gemini mythici Romani
- Freir et Freia, gemini mythici Nordici
Iaroslaus Kaczyński et Lechus Kaczyński
Gemini, constellatio caeli septentrionalis
Nexus externi |

|
Vicimedia Communia plura habent quae ad geminos spectant (Twins, Human twins).
|
↑ 1.01.1 Kraus, L.A. (1844). Kritisch-etymologisches medicinisches Lexikon (Dritte Auflage). Göttingen: Verlag der Deuerlich- und Dieterichschen Buchhandlung.
↑ 2.02.1 Lewis, C.T. & Short, C. (1879). A Latin dictionary founded on Andrews' edition of Freund's Latin dictionary. Oxford: Clarendon Press.
↑ Castelli, B. & Bruno, J.P (1713). Lexicon medicum Graeco-Latinum. Leipzig: F. Thomas
↑ Gabler, E. & Winkler, T.C. (1881). Latijnsch-Hollandsch woordenboek over de geneeskunde en de natuurkundige wetenschappen. (Tweede druk). Leiden: A.W. Sijthoff.
lsLYJNlRZn 2L3JEAEJ,MnNd1RaU,O5XXSG EP,YqvUYOC9Ucbaat5jahvqYYe460MTtmOM
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...