Eremopoesis

Multi tool use

Tabula de erēmopoiēseōs vulnerabilitate in toto orbe terrarum.
Eremopoesis (a Graeco ἐρημοποιός 'deserens, vastans' mutuatum) in assidua oecosystematum degradatione in siccis terris variationibus climaticis humanaque industria producta consistit. Terrae siccae paene dimidium terrestris superficiei in planeta occupant, annoque 2000 hospitio tertiam hominum partem in toto orbe terrarum accipiunt. Erēmopoiēsis millionum hominum vitae instrumentum in toto mundo afficit qui a beneficiis pendunt quae terrarum siccarum oecosystemata praebere possint.
In terris siccis, aquae carentia productionem cultionum, pabuli, ligni et aliarum diaconiarum limitat quae oecosystemata homini suppeditant. Terrae siccae, igitur, vulnerabilissimae incremento humanae pressionis et climatis variabilitati sunt, praesertim terrae siccae Subsaharianae et Mesoasianae.
Circiter inter 10 et 20 centesimas terrarum siccarum iam degradatae inveniuntur. Praeterea, erēmopoiēsis in cursu comminatio est quae super incolas pauperrimos et super conspectus reducendae paupertatis volitat. Quamobrem, eremopoiesis in praesenti maximorum oecologicorum problematum unum et gravis obex est ad satis faciendum basicis hominis necessitatibus in terris siccis.
Nexus interni
- Calefactio globalis
- Desilvatio
- Silvologia
Bibliographia |
- Oliver, John E., ed. 2005. Desertification. Encyclopedia of world climatology. Springer. ISBN 978-1-4020-3264-6.
- Parrillo, Vincent N., ed. 2008. Desertification. Encyclopedia of social problems, vol. 2. SAGE. ISBN 978-1-4129-4165-5.
- Reynolds, James F., et D. Mark Stafford Smith, eds. 2002. Global Desertification: Do Humans Cause Deserts? Dahlem Workshop Report 88. Berolini: Dahlem University Press.
ijxaQUFWVJ yHsrRKbu67koHCws hpJ Jm6,RGfgxAX7cB4ywUIvd NSYS
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...