Chalcolithicum

Multi tool use
Unam legis e paginis de
aevis archaeologicis
disserentibus
Aetas aënea
- Oriens Medius: Periodus Iemdet Nasr, Periodus archaica dynastica Sumeria, Imperium Accadium, Dynastia Gutia, Tertia dynastia Ur, Regna Amorrea, Prima dynastia Babylonia, Cassitae, Hittitae, Imperium Assyrium
- Europa: Cultura ceramicae cordatae, Cultura Unetice, Cultura tumulorum, Cultura camporum urnarum, Cultura tumulorum Armoricae, Cultura Wessexiae, Cultura Hilversum, Cultura argarica, Cultura Las Cogotas, Cultura aetatis Aeneae finalis Atlanticae, Cultura Talaiotica, Cultura Cycladica, Cultura Minoa, Cultura Helladica, Cultura Mycenaea
Chalcolithicum
- Oriens Medius: Cultura al Ubaid, Periodus Orchoensis
- Anatolia: Körtik Tepe, Çatal Höyük
- Europa: Cultura Starcevo, Cultura ceramicae cardialis, Cultura ceramicae fasciatae, Cultura vasi imbutiformis, Cultura vasi campanoformis, Cultura Almeriensis, Cultura Los Millares
Aceramicum
Tardenoisium, Kebarium, Natufium, Khiamium
Epipalaeo-, Mesolithicum
Azilium, Maglemosium, Swiderium
Palaeolithicum superius
Aurignacium, Gravettium, Solutrium, Magdalenium, Hamburgium, Ahrensburgium
Palaeolithicum inferius
Oldowayum, Abbevillium, Acheulium, Clactonium
Vide etiam
* Aeva historica
* Aeva geologica
Chalcolithicum vel Aëneolithicum sive Aevum cupreum est pars aevi antiqui vel pars postissima neolithici, nomine de usu cupri metalli deducto.
Cuprum in Cypro repertum erat, non autem forma metallica, sed forma aeris (aes cyprium).Cuprum metallum est molle; ergo gladii, pili, atque alia res militaria erant pulchra, sed non utilia.
Bibliographia |
- Peter Rowley-Conwy, From Genesis to Prehistory: The Archaeological Three Age System and its Contested Reception in Denmark, Britain, and Ireland. Oxonii: Oxford University Press, 2007
Nexus interni
Cultura al Ubeid (cultura chalcolithica in Mesopotamia).
Cultura vasi campaniformis (cultura chalcolithica in Europa Occidentale).
CwaD8Xz9u33,Uk keqyLSz4
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...