Venti anniversarii

Multi tool use

Venti viarii (sagittae flavi) et venti occidentales (sagittae caerulei
Venti anniversarii,[1] sive venti statarii,[2] sunt exemplar obtinens ventorum superficialium qui in tropicis ab oriente intra inferiorem atmosphaerae Telluris partem, in inferiore troposphaerii sectione prope aequatorem Telluris flant.[3] Venti anniversarii plerumque a boreoriente in Hemisphaerio Septentrionali, et ab austroriente in Hemisphaerio Australi flant, se hieme et cum oscillatio Arctica in statu calido sit conroborantes. Utebantur praefecti navium ventis anniversariis nonnulla saecula ut oceanos transgredi possent, civitates Europaeae ut suum imperium in Americam expanderent, mercatoresque ut vias commercii trans oceanos Atlanticum et Pacificum constituerent.
Venti anniversarii in meteorologia sunt fluxus gubernantes tempestatum tropicarum quae, super oceanos Atlanticum, Pacificum, Indicumque australem nascentes, terram in America Septentrionali, Asia Meridio-Orientali, Madagascaria, Africaque Orientali attingunt. Venti anniversarii pulverem Africanum ad occidentem trans Oceanum Atlanticum in Mare Caribicum et partes Americae Septentrionalis meridio-orientalis ducunt.
Historia |
Lusitani momentum ventorum anniversariorum in navigatione in Oceano Atlantico saeculo quinto decimo vel ante agnoverunt.[4]Europaei autem completam ignorabant circulationem ventorum, quae ventos ambos ex oriente et in latitudinibus altioribus ex occidente flantes comprehendit, donec Andrea de Urdaneta trans Pacificum anno 1565 navigaret.[5]
Nexus interni
- Venti occidentales
- Zona Confluentis Intertropici
Notae |
↑ J. S. T. Gehler, Physicalisches Wörterbuch; confer Passatwinde, Mussons, apud archimedes.mpiwg-berlin.mpg.de.
↑ Francicus de Verulamio, De fluxu et refluxu maris, apud www.scielo.br.
↑ Glossary of Meteorology (2010). "trade winds". American Meteorological Society
↑ Hermann R. Muelder (2007). Years of This Land - A Geographical History of the United States. Read Books. p. 38. ISBN 9781406777406
↑ Derek Hayes (2001). Historical atlas of the North Pacific Ocean: maps of discovery and scientific exploration, 1500-2000. Douglas & McIntyre. p. 18. ISBN 9781550548655
r3o0 6Q y oUx5,my2E,XKN k
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...