How to calculate the two limits?












2












$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















2












$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago














2












2








2





$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$





I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago







lanse7pty

















asked 2 hours ago









lanse7ptylanse7pty

1,8361823




1,8361823












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago


















  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago




$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago










3 Answers
3






active

oldest

votes


















1












$begingroup$

Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Without L'Hospital
    $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



    Now, by Taylor for large values of $x$
    $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
    $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
    $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
    $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






      share|cite|improve this answer









      $endgroup$














        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






        share|cite|improve this answer











        $endgroup$


















          1












          $begingroup$

          Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






          share|cite|improve this answer











          $endgroup$
















            1












            1








            1





            $begingroup$

            Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






            share|cite|improve this answer











            $endgroup$



            Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 1 hour ago

























            answered 1 hour ago









            Paras KhoslaParas Khosla

            2,726423




            2,726423























                1












                $begingroup$

                Without L'Hospital
                $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                Now, by Taylor for large values of $x$
                $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  Without L'Hospital
                  $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                  Now, by Taylor for large values of $x$
                  $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                  $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                  $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                  $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Without L'Hospital
                    $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                    Now, by Taylor for large values of $x$
                    $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                    $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                    $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                    $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                    share|cite|improve this answer









                    $endgroup$



                    Without L'Hospital
                    $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                    Now, by Taylor for large values of $x$
                    $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                    $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                    $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                    $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    Claude LeiboviciClaude Leibovici

                    125k1158136




                    125k1158136























                        0












                        $begingroup$

                        I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                            share|cite|improve this answer









                            $endgroup$



                            I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 hours ago









                            AdmuthAdmuth

                            185




                            185






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How to label and detect the document text images

                                Tabula Rosettana

                                Aureus (color)