Territorium Fortunianum

Multi tool use

Territorium Fortunianum
Res apud Vicidata repertae:


territorium Russicae FoederationisCivitas:
RussiaLocus:
54°48'N, 136°50'ESitus interretialis
Fines
Subdivisio superior: Russia, Russica Sovietica Foederativa Socialistica Res Publica
Territoria finitima: Regio autonoma Iudaica, Regio Amurensis, Iacutia, Regio Magadanensis, Regio Sachalinensis, territorium Maritimum, Heilongjiang
Forma
Area: 787 633 chiliometrum quadratum
Caput: Fortunia
Subdivisiones: Amursky District, Ayano-Maysky District, Bikinsky District, Vaninsky District, Verkhnebureinsky District, Vyazemsky District, Khabarovsk Krai, Komsomolsky District, Khabarovsk Krai, Imeni Lazo District, Nanaysky District, Nikolayevsky District, Khabarovsk Krai, Okhotsky District, Imeni Poliny Osipenko District, Sovetsko-Gavansky District, Solnechny District, Tuguro-Chumikansky District, Ulchsky District, Khabarovsky District, Q27517125, Q27517127
Gubernium
Praefectus: Sergey Furgal
Vita
Incolae: 1 328 302
Sermo publicus: Russica
Zona horaria: Vladivostok Time
Sigla
Siglum autoraedarum: 27
Territorium Fortunianum[1] vel Chabarovskense[2] (Russice Хабаровский край, tr. Chabarovskij kraj) est subiectum Foederationis Russicae, die 20 Octobris anni 1938 formatum, cum territorium Extremorientale in hoc territorium et territorium Maritimum divisum esset. In districtum foederalem Extremorientalem inclusum est.
In parte meridionali Siberiae orientalis situm et cum regionibus regione Magadanensi et re publica Iacutia (in septentrione) et regione Amurensi (in occidente) et regione autonoma Iudaica et re publica populari Sinarum (in meridio-occidente) et territorio Maritimo (in meridio-oriente) conterminum est. Aream 431 892 km² et plus 1065 milia incolarum (anno 2019) habet. Metropolis est Fortunia.
Notae |
↑ De Fortunia nomine derivatum.
↑ Cf.: Nikolajeva, T.L., 1967. Hydnaceae regionum Amurensis, Chabarovskensis et Primorskensis, in: Novosti Sistematiki Nizshikh Rastenii, 4:237—243.
Nexus externi |

|
Vicimedia Communia plura habent quae ad Territorium Fortunianum spectant.
|
Situs proprius territorii Transbaicalici .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Russice)
Pagina de territorio Fortuniano Encyclopaediae Russicae Magnae
(Russice)
qgXVoEK s2y5taJYZVl,8OQ
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...