PlayStation 3

Multi tool use
PlayStation 3 
|
Creator |
Sony
|
Typus |
Consola lusoria
|
Saeculum |
Saeculum septimum
|
Prima dies praesto |
November 11, 2006
|
Processorium medium |
Processorium medium 3.2 GHz Cell Broadband Engine cum 1 PPE ac 7 SPEs
|
Generator imaginum |
550 MHz NVIDIA/SCEI RSX 'Reality Synthesizer'
|
Instrumentum servandi ludorum |
Discus compactus et DVD etiam .
|
Instrumentum servandi |
Discus fixus magnitudinis 8 aut 10 Gb.
Etiam sunt chartae memoriae magnitudinis 8 Mb
|
Gubernacula Lusorium |
4 maximo aut mus et claviatura
|
Conexitas |
3 x Universal Serial Bus (USB), Infrared Communications
|
Munus interretis |
Playstation Network (Interrete Playstationis)
|
Numerus Venditionum |
In omnibus terris: 33.5 decies centena milia usque ad diem 31 Decembris anno 2009))
|
Ludus venditionis maximae |
|
PlayStation 3 (Iaponice: プレイステーション3, Pureisutēshon Surī; Latine 'Statio Lusoria III', vel Latinitate dare 'Plaestesium III'), officialiter abbreviatum ut PS3, est consola lusoria saeculi septimi a Sony facta. Est consola lusoria tertia Sony. Primum missus est die 11 Novembris 2006 natione Iaponia.
Nexus interni
- PlayStation
- PlayStation 2
- PlayStation Vita
- Wii
- Xbox 360
- Playstation 4
Nexus externi |

|
Vicimedia Communia plura habent quae ad PlayStation 3 spectant.
|
- Situs interretiales officiales
- Asia
- Australia
- Canada
- Nova Zelandia
- CFA
- Britanniarum Regnum
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad technologiam spectat. Amplifica, si potes!
|

|
Haec stipula ad ludum vel ad exercitationem corporis spectat. Amplifica, si potes!
|
Ee6 G HxlIq,eo,fZJYdJ5eSBwv2TkLgBdye,zVMy9SjLRqrY2oTFYolBl,mgpq3Vs 671Il,upVpC8KQLV Pcc7lv z
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...