Congo (flumen)

Multi tool use

Solis ortus et Congo Flumen prope Mossaka
Congo[1] sive Congum[2] sive Zaire,[3] est magnum flumen Africanum, quod se in Oceanum Atlanticum effundit. Id est altissimum orbis terrarum flumen, in nonnullis locis plus quam 230 metra altum.[4]Volumine aquae emissae id est tertium orbis terrarum flumen; longitudine, circa 4374 chiliometrorum, secundum Africae (post Nilum) et
nonum orbis terrarum flumen
Appellatur Congo ex nomine Regni Congi[3] antiqui, qui terras ad ostium fluminis occupabat. Respublica Democratica Congensis et Respublica Congensis (olim Zaire), civitates quae secundum ripas fluminis patent, ex eo appellantur. Inter 1971 et 1997, administratio Zaire id Zaire Flumen appellavit.

Cursus fluminis in Republica Congensi.
Tributarii |
Hi sunt tributarii, ordine ex ore ad fontem digesti:
Inkisi
Nsele (latus australis Pool Malebo)
- Bombo
Kwa (Kasai appellatum ex influxu ex Fimi)
- Lefini
- Likouala
- Sangha
Ubangi
- Lomami Flumen
Luvua
- Chambeshi

Cursus et pelvis siccans Fluminis Congo, civitatibus signatis.

Cursus et pelvis siccans Fluminis Congo, topographia signata.
Notae |
↑
Fons nominis Latini desideratur (addito fonte, hanc formulam remove)
↑ "Flumen Congum" apud curiam Romanam hic
↑ 3.03.1 "Congum, seu Congo, Regnum ... flumen Zaire ..." in Iohannes Iacobus Hofmannus, Lexicon universale (1698) ~
↑ The Congo Project, apud research.amnh.org (American Museum of Natural History).
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad geographiam spectat. Amplifica, si potes!
|
EJSzkY,fg54J3ZEPPPbJcsMcU7UzVW cu0bH
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...