C++ debug/print custom type with GDB : the case of nlohmann json library












10















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = {{"bar", "barz"}};


What I would like to have in GDB:



(gdb) p foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.
}


Current behavior



(gdb) p foo
$1 = {
m_type = nlohmann::detail::value_t::object,
m_value = {
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315
}
}
(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 = {
_M_t = {
_M_impl = {
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {<No data fields>}, <No data fields>},
<std::_Rb_tree_key_compare<std::less<void> >> = {
_M_key_compare = {<No data fields>}
},
<std::_Rb_tree_header> = {
_M_header = {
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
},
_M_node_count = 5
}, <No data fields>}
}
}









share|improve this question

























  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    10 mins ago
















10















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = {{"bar", "barz"}};


What I would like to have in GDB:



(gdb) p foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.
}


Current behavior



(gdb) p foo
$1 = {
m_type = nlohmann::detail::value_t::object,
m_value = {
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315
}
}
(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 = {
_M_t = {
_M_impl = {
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {<No data fields>}, <No data fields>},
<std::_Rb_tree_key_compare<std::less<void> >> = {
_M_key_compare = {<No data fields>}
},
<std::_Rb_tree_header> = {
_M_header = {
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
},
_M_node_count = 5
}, <No data fields>}
}
}









share|improve this question

























  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    10 mins ago














10












10








10








I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = {{"bar", "barz"}};


What I would like to have in GDB:



(gdb) p foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.
}


Current behavior



(gdb) p foo
$1 = {
m_type = nlohmann::detail::value_t::object,
m_value = {
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315
}
}
(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 = {
_M_t = {
_M_impl = {
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {<No data fields>}, <No data fields>},
<std::_Rb_tree_key_compare<std::less<void> >> = {
_M_key_compare = {<No data fields>}
},
<std::_Rb_tree_header> = {
_M_header = {
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
},
_M_node_count = 5
}, <No data fields>}
}
}









share|improve this question
















I'm working on a project using nlohmann's json C++ implementation.



How can one easily explore nlohmann's JSON keys/vals in GDB ?



I tried to use this STL gdb wrapping since it provides helpers to explore STL structures that lohmann's JSON lib is using.
But I don't find it convenient.



Here is a simple use case:



json foo;
foo["flex"] = 0.2;
foo["awesome_str"] = "bleh";
foo["nested"] = {{"bar", "barz"}};


What I would like to have in GDB:



(gdb) p foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": etc.
}


Current behavior



(gdb) p foo
$1 = {
m_type = nlohmann::detail::value_t::object,
m_value = {
object = 0x129ccdd0,
array = 0x129ccdd0,
string = 0x129ccdd0,
boolean = 208,
number_integer = 312266192,
number_unsigned = 312266192,
number_float = 1.5427999782486669e-315
}
}
(gdb) p foo.at("flex")
Cannot evaluate function -- may be inlined // I suppose it depends on my compilation process. But I guess it does not invalidate the question.
(gdb) p *foo.m_value.object
$2 = {
_M_t = {
_M_impl = {
<std::allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {
<__gnu_cxx::new_allocator<std::_Rb_tree_node<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, nlohmann::basic_json<std::map, std::vector, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool, long long, unsigned long long, double, std::allocator, nlohmann::adl_serializer> > > >> = {<No data fields>}, <No data fields>},
<std::_Rb_tree_key_compare<std::less<void> >> = {
_M_key_compare = {<No data fields>}
},
<std::_Rb_tree_header> = {
_M_header = {
_M_color = std::_S_red,
_M_parent = 0x4d72d0,
_M_left = 0x4d7210,
_M_right = 0x4d7270
},
_M_node_count = 5
}, <No data fields>}
}
}






c++ json gdb pretty-print nlohmann-json






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 34 mins ago







LoneWanderer

















asked 6 hours ago









LoneWandererLoneWanderer

1,112825




1,112825













  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    10 mins ago



















  • You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

    – Retired Ninja
    10 mins ago

















You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

– Retired Ninja
10 mins ago





You mean you don't find great joy manually digging through red/black trees to try and find something? ;)

– Retired Ninja
10 mins ago












1 Answer
1






active

oldest

votes


















13














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer


























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago













Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55316620%2fc-debug-print-custom-type-with-gdb-the-case-of-nlohmann-json-library%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









13














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer


























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago


















13














I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer


























  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago
















13












13








13







I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None





share|improve this answer















I found my own answer reading further the GDB capabilities and stack overflow questions concerning print of std::string.



Short path



I simply defined a gdb command as follows:



# this is a gdb script
# can be loaded from gdb using
# source my_script.txt (or. gdb or whatever you like)
define pjson
# use the lohmann's builtin dump method, ident 4 and use space separator
printf "%sn", $arg0.dump(4, ' ', true).c_str()
end
# configure command helper (text displayed when typing 'help pjson' in gdb)
document pjson
Prints a lohmann's JSON C++ variable as a human-readable JSON string
end


Using it in gdb:



(gdb) source my_custom_script.gdb
(gdb) pjson foo
{
"flex" : 0.2,
"awesome_str": "bleh",
"nested": {
"bar": "barz"
}
}




Over the top



The other way is to define a GDB pretty printer in python and make it tightly associated to your project (autoloading stuff activated). See this link for an in-depth approach.



Basically, when in gdb you would type:



(gdb) p foo


and GDB will automagically test for foo's type and invoke the associated pretty printer if any. That would end-up in the same result. The main difference is that it is done using the well-known print command. The person debugging would not have to learn a new command (like the pjson defined in the short answer).



Quoting:




A pretty-printer consists of two parts: a lookup function to detect if the type is supported, and the printer itself.



Here is an example showing how a std::string printer might be written. See Pretty Printing API, for details on the API this class must provide.




class StdStringPrinter(object):
"Print a std::string"

def __init__(self, val):
self.val = val

def to_string(self):
return self.val['_M_dataplus']['_M_p']

def display_hint(self):
return 'string'


Still quoting for the sake of completness:




And here is an example showing how a lookup function for the printer example above might be written.




def str_lookup_function(val):
lookup_tag = val.type.tag
if lookup_tag == None:
return None
regex = re.compile("^std::basic_string<char,.*>$")
if regex.match(lookup_tag):
return StdStringPrinter(val)
return None






share|improve this answer














share|improve this answer



share|improve this answer








edited 28 mins ago

























answered 6 hours ago









LoneWandererLoneWanderer

1,112825




1,112825













  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago





















  • That looks pretty useful. Unfortunately I am out of votes ATM.

    – πάντα ῥεῖ
    6 hours ago



















That looks pretty useful. Unfortunately I am out of votes ATM.

– πάντα ῥεῖ
6 hours ago







That looks pretty useful. Unfortunately I am out of votes ATM.

– πάντα ῥεῖ
6 hours ago






















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55316620%2fc-debug-print-custom-type-with-gdb-the-case-of-nlohmann-json-library%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to label and detect the document text images

Vallis Paradisi

Tabula Rosettana