Boeoticum Foedus

Multi tool use
Boeoticum Foedus[1] fuit foedus 15 civitatum (πόλις) in regione Boeotia ab urbe Thebarum ductum, quod a sexto usque ad quartum saeculum a.C.n. in Graecia antiqua exstabat. Summum culmen fortunae in Pugna Leuctrica anno 371 a.C.n. attigit, cum exercitus Boeoticus Epaminonda Thebano duce phalangem Lacedaemoniam, quam hactenus in acie vinci posse non est creditum, funditus evertit.
Foedus in 11 circulos divisum est, quorum cuique "Boeotarches" delectus praefuit. Sed Gorgida, Epaminonda ac Pelopida ducibus Thebae ab circa anno 380 a.C.n. tanto alias foederis civitates dominari coepit, ut eas civitates, quae defecerant, circa annum 375 a.C.n. non solum sub dicionem redigerent, sed urbes earum (Plataeas ac Thespias) delerent. Thebanis anno 375 a.C.n. in consilio pacis redintegrandae Spartae habito foederatis, ne singuli iurarent, quo autonomia eorum agnita esset, recusantibus, Lacedaemonii in bellum profecti sunt, quo clade Leuctrica Thebanis per aliquot annos summum Graeciae imperium (Graece: ἡγεμονία) datum est.
Bibliographia |
- Robertus J. Buck, Boiotia and the Boiotian League, 432-371 B. C.. Edmonton (Alta.) : the University of Alberta press, 1994.
- Paulus Roesch, Thespies et la confédération béotienne. Parisiis : E. de Boccard, 1965.
- Petrus Salmon, Etude sur la Confédération Béotienne (447/6-386). Son organisation et son administration, Bruxellis 1978
Nexus interni
- Foedus Delium
- Foedus Aetolicum
- Foedus Achaicum
- Historia Graeca
Nota |
↑ Le Dictionnaire des Antiquités Grecques et Romaines de Daremberg et Saglio (1877-1919)
FRKUV8L6gZkC2u gWUpB fHokPwSkAgkbxyyv kEAoZvnr5rhhqcQzL7ZyEr3JglIUxBwVbq VEbB PNxezr,Cy38k3K
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...