Plastica (materia)

Multi tool use

Supellex ex varia materia plastica facta.

Molecula plastica, syndiotacticum polypropenum nomine.
Plastica (sc. res),[1] vel materia plastica,[2][1][3] (ab adiectivo Graeco πλαστικός 'ad fingendum aptus' < πλάσσω 'fingo') est materia synthetica polymerica amorpha ad fingendum apta. Plastica etiam statum materiae significat, quem multae tales res prope aeris temperaturam ambientes plerumque adsumunt.
Plasticitatem monstrat materia solida, cum a tensione sempiterne deformatur quae maximum tensionis punctum materiae excedit. Ex contrario post maximum tensionis punctum vitrum et crystallum, ne deformetur, franguntur.
Non omnes materiae polymericae amorphae quae plasticae usitate appellantur statum plasticum (et plasticitatem) ostendunt. Materiae polymericae, cum sub punctum transitionis vitreae refrigerantur, vitra fiunt; et hoc punctum super temperaturam ambientem potest sedere.
Duo genera plastici dignoscuntur: thermoplasticum et thermogelatum. Thermoplastica sufficiente calore applicata statum plasticum ostendunt aut quasi liquida fiunt; exempli gratia, polyethylena, polystyrena, et polytetrafloroethylena (PTFE). Thermofusa autem numquam statum plasticum adsumunt nec liquida fiunt; exempli gratia, polyester.
Nexus interni
- Fasciola adhaerens
- Pollutio plastica
- Sacculus plasticus
Notae |
↑ 1.01.1 Ebbe Vilborg, Norstedts svensk-latinska ordbok, editio secunda, 2009.
↑ Ephemeris 2004; Ephemeris 2006;
Ephemeris 2009
↑ John C. Traupman, Latin and English Dictionary (Novi Eboraci: Bantam Books, 2007).
Nexus externi |

|
Vicimedia Communia plura habent quae ad plasticum spectant.
|
Status materiae
Fluidum · Gas · Plasma · Condensatum Bose-Einstein · Aerosol
Liquidum · Colloide · Emulsio · Microemulsio · Spuma · Sol · Superfluidum
Crystallum liquidum · Status isotropicus · Status nematicus · Status smecticus · Status chiralis · Status columnaris
Solidum · Crystallum · Supersolidum · Vitrum · Plasticum · Gelatum · Spuma solida
Magnes · Ferromagnes · Paramagnes · Diamagnes · Vitrum turbinum
Gellium · Insulatrum · Conductrum · Semiconductrum · Superconductrum
POTlR pGdue4uM9,VHh6X4vd1lLmAL4Goy,q8brpDO74c 1IuIe478Bf5YmRygulypqjDzv6Bje8o7Oe
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...