Dolium

Multi tool use
Dolium fuit vasorum fictilium maximum, quo Romani antiqui usi sunt ad condenda et interdum etiam transportanda alimenta, sicut oleum, frumentum et praesertim vinum. Vinum enim, dum fervet, in doliis picatis habebatur in cella vinaria (sive doliario) positis. Nonnumquam dolia capacia humi mersa erant,[1] ex quibus vinum defaecatum in amphoras et cados diffundebatur. Saeculo XX exeunte in ora meridiana Franciae reperta sunt naufragia Romana, quorum spatia oneraria fere 14 doliorum capacia erant.[2]
Dolia vectoria aut rotunda et ventriosa erant aut cylindrata figura,[3] saepeque operculata erant. Primo dolia fictilia fuerunt, sed postea etiam lignea[4] et plumbea.[5] Saepe dolia rota figuli lente currenti manibus ampliabantur in capacitatem sesquicullei,[6] quae instar 30 amphorarum (= c. 786 lt) erat.
Nexus interni
Notae |
↑ Col., Rust. 12.18.6.
↑ Parker 1992; Paterson 2015.
↑ Quae etiam seriae vocabantur.
↑ Plin., Nat. 8.16.
↑ Dig. 33.7.26.
↑ Dolia sesquicullearia (Col., Rust. 12.18.7).
Bibliographia |
- Docter, Roald Fritjof. 2006. Dolium. Brill’s New Pauly. Antiquity volumes edited by: Hubert Cancik & Helmuth Schneider. Brill Online, 2016.
- Funari, Pedro Paulo A. 1988-1989. L'anfora e la terminologia latina dei vasi. Annali della Facoltà di Lettere e Filosofia (Università di Perugia) 26: 37-46.
- Parker, A. J. 1992. Ancient Shipwrecks of the Mediterranean and the Roman Provinces. Tempus Reparatum: Oxford.
- Paterson, Jeremy. 2015. Dolium. The Oxford Companion to Wine. Quartum editum ab Jancis Robinson & Julia Harding. Oxford University Press.
yb,k,Hvj hJet R,x,8rKvIDJ GXUp,jPd,gzxmpPNckA9tB3ovlohDtuX7iZ uAZu 6Gbe3
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...