Sapindales

Multi tool use
Sapindales
|

|
Acer negundo
|
Taxinomia
|
Regnum:
|
Plantae
|
(inordinata):
|
Angiospermae
|
(inordinata):
|
Eudicotyledones
|
(inordinatus):
|
Rosidae
|
Ordo:
|
Sapindales Dumort.
|
Familiae
|
Vide commentarium.
|

Chloroxylon swietenia ex Rutaceis
Sapindales (nomen botanicum a Bartholomaeo du Mortier statutum) sunt ordo plantarum florentium, cuius notissimae plantae sunt Citrus ; Acer, Aesculus, Litchi, et Nephelium ; Anacardium et Mangifera ; Boswellia sacra et Commiphora ; et Azadirachta indica et Swietenia.
Familiae |
Systema APG II anni 2003 Sapindales in clado Eurosidarum II (in Rosidis, in Eudicotyledonibus) comprehendit, in novem familiis sequentibus:[1][2]
- Anacardiaceae
- Biebersteiniaceae
- Burseraceae
- Kirkiaceae
- Meliaceae
Nitrariaceae (+ Peganaceae et Tetradiclidaceae): vide e.g. Nitraria billardierei, Nitraria schoberi
- Rutaceae
- Sapindaceae
- Simaroubaceae
("+ ..." = opinabile familiae superioris segregatum)
Systema autem Cronquist anni 1981 dissimiliorem circumscriptionem adhibebat, in familiis sequentibus:
- Staphyleaceae
- Melianthaceae
- Bretschneideraceae
- Akaniaceae
- Sapindaceae
- Hippocastanaceae
- Aceraceae
- Burseraceae
- Anacardiaceae
- Julianiaceae
- Simaroubaceae
- Cneoraceae
- Meliaceae
- Rutaceae
- Zygophyllaceae
Notae |
↑ Muellner, A. N.; D. D. Vassiliades, and S. S. Renner (2007). "Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context". Plant Systematics and Evolution 266: 233–252
↑ Stevens, P.F. ((2001+)). "Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since."]. Missouri Botanical Garden
Nexus externi |

|
Situs scientifici: • Tela Botanica • ITIS • NCBI • Biodiversity • Encyclopedia of Life • Marine Species • Fossilworks
|

|
Vide Sapindales apud Vicispecies.
|

|
Vicimedia Communia plura habent quae ad Sapindales spectant.
|
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biologiam spectat. Amplifica, si potes!
|
SmbHdYqzOSlYXRaRohvoWdl0ZPf165scf,Y7259 tP4t,IwXPjf,0R4 fNJDAg2laWfCHP7,V9PzM54f,kgt,ok3OyLEz,nN0fxrC3hrO8Ep
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...