Circulus Northeim

Multi tool use
Circulus Northeim
Landkreis Northeim

|

|
Terra Foederalis
|
Saxonia Inferior Niedersachsen
|
Caput circuli
|
Northeim Northeim
|
Signum autocinetorum
|
NOM (ab anno 2012 etiam EIN et GAN)
|
Area
|
1267 km²
|
Numerus incolarum
|
137.658
|
Spissitudo incolarum
|
109 per km²
|
Numerus communium
|
11
|
Situs interretialis
|
landkreis-northeim.de
|
Circulus Northeim, nunc pars Saxoniae Inferioris anno 1885 conditus est. Caput circuli urbs Northeim est.
Communia circuli |
Circulus Northeim a die 1 Ianuarii 2013, cum Kreiensen ad Einbeck urbs accessisset, 11 communia habet. Quae sunt:
Gandersum, oppidum
Bodenfelde, commune
Dassel, oppidum
Einbeck, oppidum
Hardegsen, oppidum
Kalefeld commune
Katlenburg-Lindau commune
Moringen, commune
Nörten-Hardenberg, commune
Northeim, oppidum et caput circuli
Uslar, oppidum
Nexus externi |

|
Vicimedia Communia plura habent quae ad Circulus Northeim spectant (Circulus Northeim, Landkreis Northeim).
|
Nexus interni
- Index circulorum et liberarum urbium Saxoniae Inferioris
Circuli terrae et urbes circulo exemptae Saxoniae Inferioris
|
|
Alluvionis Visurgensis circulus |Aurich circulus |Comitatus Binethensis circulus |Brunsvicum urbs |Cellensis circulus |Cloppenburgensis circulus |Cuxhavensis circulus |Delmenhorstium urbs |Diepholz circulus |Emda urbs |Terra Emesensis circulus |Frisia circulus |Gifhorn circulus |Goslaria circulus |Gottingae circulus |Guelpherbytensis circulus |Hamala-Petrimons circulus |Regio Hannoverana |Harburgum circulus |Heidensis circulus |Helmstadium circulus |Hildesiensis circulus |Holtisminnensis circulus |Lerensis circulus |Lüchow-Dannenberg circulus |Luneburgensis circulus |Neoburgum ad Visurgim circulus |Northeim circulus |Oldenburgum urbs |Oldenburgensis circulus |Osnabruga urbs |Osnabrugensis circulus |Osterholz circulus |Paludosoterrensis circulus |Peine circulus |Rotenburgensis circulus |Salzgitter urbs |Stadensis circulus |Theorosburgensis circulus |Uelzen circulus |Vechta circulus |Verdensis circulus |Wilhelmshaven urbs |Widmundensis circulus |Wolfsburg urbs |
|
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad geographiam spectat. Amplifica, si potes!
|
D rA,m sezQvPT kF0aW,2Q5mHxFfThYyzMJpjOR4KF 47r W vr u,mNo7yx M7lh1T,WKRt7XAIG
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...